IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v294y2021i3p843-859.html
   My bibliography  Save this article

Modeling price response from retail sales: An empirical comparison of models with different representations of heterogeneity

Author

Listed:
  • Weber, Anett
  • Steiner, Winfried J.

Abstract

We assess the performance of store sales models with discrete versus continuous representations of heterogeneity. Specifically, we compare the general heterogeneity model introduced by Allenby et al. (1998) and Lenk and DeSarbo (2000) to its nested versions, a homogeneous model ignoring heterogeneity in marketing effects, a hierarchical Bayes model and a latent class model within a fully Bayesian framework. In an empirical application with scanner data of a large retail chain, we analyze the possible improvements in model fit and predictive validity for approaches that allow for heterogeneity compared to the homogeneous model, and illustrate differences between the various model versions regarding price elasticities. We further compare the performance of the different models to the zone pricing model practiced by the retailer. We find that the more parsimonious models with discrete representations of heterogeneity clearly outperform their continuous counterparts in terms of the model likelihood. Moreover, incorporating heterogeneity does not improve the model fit for many brands compared to the homogeneous model. The prediction accuracy of models with discrete representations of heterogeneity is comparable or even superior to that of continuous heterogeneity models. Noticeably, the predictive performance of the retailer’s zone model is considerably worse than that of the best model for the majority of brands. Our empirical study further demonstrates that models with different representations of heterogeneity provide similar implications for price elasticities, suggesting that there is little benefit from using more complex continuous heterogeneity models from a managerial point of view, at least for the present data.

Suggested Citation

  • Weber, Anett & Steiner, Winfried J., 2021. "Modeling price response from retail sales: An empirical comparison of models with different representations of heterogeneity," European Journal of Operational Research, Elsevier, vol. 294(3), pages 843-859.
  • Handle: RePEc:eee:ejores:v:294:y:2021:i:3:p:843-859
    DOI: 10.1016/j.ejor.2020.07.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720306810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.07.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Foekens, Eijte W. & Leeflang, Peter S. H. & Wittink, Dick R., 1994. "A comparison and an exploration of the forecasting accuracy of a loglinear model at different levels of aggregation," International Journal of Forecasting, Elsevier, vol. 10(2), pages 245-261, September.
    2. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    3. Robert C. Blattberg & Richard Briesch & Edward J. Fox, 1995. "How Promotions Work," Marketing Science, INFORMS, vol. 14(3_supplem), pages 122-132.
    4. Harald J. van Heerde & Peter S. H. Leeflang & Dick R. Wittink, 2002. "How Promotions Work: Scan Pro-Based Evolutionary Model Building," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 54(3), pages 198-220, July.
    5. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    6. Harry Haupt & Kathrin Kagerer & Winfried J. Steiner, 2014. "Smooth Quantile‐Based Modeling Of Brand Sales, Price And Promotional Effects From Retail Scanner Panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(6), pages 1007-1028, September.
    7. Lang, Stefan & Steiner, Winfried J. & Weber, Anett & Wechselberger, Peter, 2015. "Accommodating heterogeneity and nonlinearity in price effects for predicting brand sales and profits," European Journal of Operational Research, Elsevier, vol. 246(1), pages 232-241.
    8. Karniouchina, Ekaterina V. & Moore, William L. & van der Rhee, Bo & Verma, Rohit, 2009. "Issues in the use of ratings-based versus choice-based conjoint analysis in operations management research," European Journal of Operational Research, Elsevier, vol. 197(1), pages 340-348, August.
    9. Leeflang, P.S.H. & Wittink, Dick R., 2000. "Building models for marketing decisions: past, present and future," Research Report 00F20, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    10. Akinc, Deniz & Vandebroek, Martina, 2018. "Bayesian estimation of mixed logit models: Selecting an appropriate prior for the covariance matrix," Journal of choice modelling, Elsevier, vol. 29(C), pages 133-151.
    11. Pradeep Chintagunta & Jean-Pierre Dubé & Vishal Singh, 2003. "Balancing Profitability and Customer Welfare in a Supermarket Chain," Quantitative Marketing and Economics (QME), Springer, vol. 1(1), pages 111-147, March.
    12. Brezger, Andreas & Steiner, Winfried J., 2008. "Monotonic Regression Based on Bayesian PSplines: An Application to Estimating Price Response Functions From Store-Level Scanner Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 90-104, January.
    13. repec:dgr:rugsom:00f20 is not listed on IDEAS
    14. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    15. Voleti, Sudhir & Srinivasan, V. & Ghosh, Pulak, 2017. "An approach to improve the predictive power of choice-based conjoint analysis," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 325-335.
    16. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    17. Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
    18. Anett Weber & Winfried J. Steiner & Stefan Lang, 2017. "A comparison of semiparametric and heterogeneous store sales models for optimal category pricing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 403-445, March.
    19. Friederike Paetz & Winfried J. Steiner, 2017. "The benefits of incorporating utility dependencies in finite mixture probit models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 793-819, July.
    20. Füsun Gönül & Kannan Srinivasan, 1993. "Modeling Multiple Sources of Heterogeneity in Multinomial Logit Models: Methodological and Managerial Issues," Marketing Science, INFORMS, vol. 12(3), pages 213-229.
    21. Peter E. Rossi, 2014. "Bayesian Non- and Semi-parametric Methods and Applications," Economics Books, Princeton University Press, edition 1, number 10259.
    22. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    23. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    24. Alan L. Montgomery, 1997. "Creating Micro-Marketing Pricing Strategies Using Supermarket Scanner Data," Marketing Science, INFORMS, vol. 16(4), pages 315-337.
    25. Guhl, Daniel, 2019. "Addressing endogeneity in aggregate logit models with time-varying parameters for optimal retail-pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 684-698.
    26. Hruschka, Harald, 2006. "Relevance of functional flexibility for heterogeneous sales response models: A comparison of parametric and semi-nonparametric models," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1009-1020, October.
    27. Praveen K. Kopalle & Carl F. Mela & Lawrence Marsh, 1999. "The Dynamic Effect of Discounting on Sales: Empirical Analysis and Normative Pricing Implications," Marketing Science, INFORMS, vol. 18(3), pages 317-332.
    28. Peter Ebbes & Michel Wedel & Ulf Böckenholt & Ton Steerneman, 2005. "Solving and Testing for Regressor-Error (in)Dependence When no Instrumental Variables are Available: With New Evidence for the Effect of Education on Income," Quantitative Marketing and Economics (QME), Springer, vol. 3(4), pages 365-392, December.
    29. Peter S.H. Leeflang & Harald J. van Heerde & Dick Wittink, 2002. "How Promotions Work: SCAN*PRO-Based Evolutionary Model Building," Yale School of Management Working Papers ysm292, Yale School of Management.
    30. Andrews, Rick L. & Currim, Imran S. & Leeflang, Peter & Lim, Jooseop, 2008. "Estimating the SCAN⁎PRO model of store sales: HB, FM or just OLS?," International Journal of Research in Marketing, Elsevier, vol. 25(1), pages 22-33.
    31. Randolph E. Bucklin & Sunil Gupta, 1999. "Commercial Use of UPC Scanner Data: Industry and Academic Perspectives," Marketing Science, INFORMS, vol. 18(3), pages 247-273.
    32. Michael Keane & Nada Wasi, 2013. "Comparing Alternative Models Of Heterogeneity In Consumer Choice Behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 1018-1045, September.
    33. Hein, Maren & Kurz, Peter & Steiner, Winfried J., 2019. "On the effect of HB covariance matrix prior settings: A simulation study," Journal of choice modelling, Elsevier, vol. 31(C), pages 51-72.
    34. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    35. Fruhwirth-Schnatter, Sylvia & Tuchler, Regina & Otter, Thomas, 2004. "Bayesian Analysis of the Heterogeneity Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 2-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp Aschersleben & Winfried J. Steiner, 2022. "A semiparametric approach to estimating reference price effects in sales response models," Journal of Business Economics, Springer, vol. 92(4), pages 591-643, May.
    2. Anett Weber & Winfried J. Steiner & Stefan Lang, 2017. "A comparison of semiparametric and heterogeneous store sales models for optimal category pricing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 403-445, March.
    3. Guhl, Daniel & Baumgartner, Bernhard & Kneib, Thomas & Steiner, Winfried J., 2018. "Estimating time-varying parameters in brand choice models: A semiparametric approach," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 394-414.
    4. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.
    5. Lang, Stefan & Steiner, Winfried J. & Weber, Anett & Wechselberger, Peter, 2015. "Accommodating heterogeneity and nonlinearity in price effects for predicting brand sales and profits," European Journal of Operational Research, Elsevier, vol. 246(1), pages 232-241.
    6. Guhl, Daniel, 2019. "Addressing endogeneity in aggregate logit models with time-varying parameters for optimal retail-pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 684-698.
    7. Michel Wedel & Jie Zhang & Fred Feinberg, 2015. "Implementing Retail Category Management: a Model-Based Approach to Setting Optimal Markups," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(2), pages 165-176, June.
    8. Antonis A. Michis, 2023. "Retail distribution evaluation in brand-level sales response models," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 366-378, September.
    9. Andrews, Rick L. & Currim, Imran S. & Leeflang, Peter & Lim, Jooseop, 2008. "Estimating the SCAN⁎PRO model of store sales: HB, FM or just OLS?," International Journal of Research in Marketing, Elsevier, vol. 25(1), pages 22-33.
    10. Leeflang, Peter, 2011. "Paving the way for “distinguished marketing”," International Journal of Research in Marketing, Elsevier, vol. 28(2), pages 76-88.
    11. B. P. S. Murthi & Sumit Sarkar, 2003. "The Role of the Management Sciences in Research on Personalization," Management Science, INFORMS, vol. 49(10), pages 1344-1362, October.
    12. Max J. Pachali & Peter Kurz & Thomas Otter, 2020. "How to generalize from a hierarchical model?," Quantitative Marketing and Economics (QME), Springer, vol. 18(4), pages 343-380, December.
    13. Jorge Silva-Risso & Irina Ionova, 2008. "—A Nested Logit Model of Product and Transaction-Type Choice for Planning Automakers' Pricing and Promotions," Marketing Science, INFORMS, vol. 27(4), pages 545-566, 07-08.
    14. Fernández-Antolín, Anna & Guevara, C. Angelo & de Lapparent, Matthieu & Bierlaire, Michel, 2016. "Correcting for endogeneity due to omitted attitudes: Empirical assessment of a modified MIS method using RP mode choice data," Journal of choice modelling, Elsevier, vol. 20(C), pages 1-15.
    15. Max J. Pachali & Peter Kurz & Thomas Otter, 0. "How to generalize from a hierarchical model?," Quantitative Marketing and Economics (QME), Springer, vol. 0, pages 1-38.
    16. Kurt A. Jetta & Erick W. Rengifo, 2009. "Improved Baseline Sales," Fordham Economics Discussion Paper Series dp2009-02, Fordham University, Department of Economics.
    17. Hein, Maren & Goeken, Nils & Kurz, Peter & Steiner, Winfried J., 2022. "Using Hierarchical Bayes draws for improving shares of choice predictions in conjoint simulations: A study based on conjoint choice data," European Journal of Operational Research, Elsevier, vol. 297(2), pages 630-651.
    18. Suresh Divakar & Brian T. Ratchford & Venkatesh Shankar, 2005. "Practice Prize Article—: A Multichannel, Multiregion Sales Forecasting Model and Decision Support System for Consumer Packaged Goods," Marketing Science, INFORMS, vol. 24(3), pages 334-350, July.
    19. Evgeny A. Antipov & Elena B. Pokryshevskaya, 2020. "Interpretable machine learning for demand modeling with high-dimensional data using Gradient Boosting Machines and Shapley values," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 355-364, October.
    20. B. P. S. Murthi & Sumit Sarkar, 2003. "The Role of the Mangement Sciences in Research on Personalization," Review of Marketing Science Working Papers 2-2-1025, Berkeley Electronic Press.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:294:y:2021:i:3:p:843-859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.