IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v91y2016icp492-510.html
   My bibliography  Save this article

Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data

Author

Listed:
  • Buddhavarapu, Prasad
  • Scott, James G.
  • Prozzi, Jorge A.

Abstract

Road segments with identical site-specific attributes often exhibit significantly different crash counts due to unobserved reasons. The extent of unobserved heterogeneity associated with a road feature is to be estimated prior to selecting the relevant safety treatment. Moreover, crash count data is often over-dispersed and spatially correlated. This paper proposes a spatial negative binomial specification with random parameters for modeling crash counts of contiguous road segments. The unobserved heterogeneity is incorporated using a finite multi-variate normal mixture prior on the random parameters; this allows for non-normality, skewness in the distribution of the random parameters, facilitates correlation across the random parameters, and relaxes any distributional assumptions. The model extracts the inherent groups of road segments with crash counts that are equally sensitive to the road attributes on an average; the heterogeneity within these groups is also allowed in the proposed framework. The specification simultaneously accounts for potential spatial correlation of the crash counts from neighboring road segments. A Gibbs sampling framework is proposed that leverages recent theoretical developments on data-augmentation algorithms, and elegantly sidesteps many of the computational difficulties usually associated with Bayesian inference of count models. Empirical results suggests the presence of two latent groups and spatial correlation within the study road network. Road features with significantly different effect on crash counts across two latent groups of road segments were identified.

Suggested Citation

  • Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
  • Handle: RePEc:eee:transb:v:91:y:2016:i:c:p:492-510
    DOI: 10.1016/j.trb.2016.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516303721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karlis, Dimitris, 2005. "EM Algorithm for Mixed Poisson and Other Discrete Distributions," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 3-24, May.
    2. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    3. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2012. "A Poisson mixture model of discrete choice," Journal of Econometrics, Elsevier, vol. 166(2), pages 184-203.
    6. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    7. Deb, Partha & Trivedi, Pravin K, 1997. "Demand for Medical Care by the Elderly: A Finite Mixture Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 313-336, May-June.
    8. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    9. Markus Jochmann & Roberto León‐González, 2004. "Estimating the demand for health care with panel data: a semiparametric Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 1003-1014, October.
    10. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    11. Wedel, M, et al, 1993. "A Latent Class Poisson Regression Model for Heterogeneous Count Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 397-411, Oct.-Dec..
    12. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    13. Xiong, Yingge & Mannering, Fred L., 2013. "The heterogeneous effects of guardian supervision on adolescent driver-injury severities: A finite-mixture random-parameters approach," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 39-54.
    14. Fruhwirth-Schnatter, Sylvia & Tuchler, Regina & Otter, Thomas, 2004. "Bayesian Analysis of the Heterogeneity Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 2-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    3. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    4. Ping Zhang & Chenzhu Wang & Fei Chen & Suping Cui & Jianchuan Cheng & Wu Bo, 2022. "A Random-Parameter Negative Binomial Model for Assessing Freeway Crash Frequency by Injury Severity: Daytime versus Nighttime," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    5. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    6. Zhenggan Cai & Fulu Wei & Zhenyu Wang & Yongqing Guo & Long Chen & Xin Li, 2021. "Modeling of Low Visibility-Related Rural Single-Vehicle Crashes Considering Unobserved Heterogeneity and Spatial Correlation," Sustainability, MDPI, vol. 13(13), pages 1-24, July.
    7. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
    8. Chen Wang & Ming Zhong & Hui Zhang & Siyao Li, 2022. "Impacts of Real-Time Traffic State on Urban Expressway Crashes by Collision and Vehicle Type," Sustainability, MDPI, vol. 14(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Yingge & Mannering, Fred L., 2013. "The heterogeneous effects of guardian supervision on adolescent driver-injury severities: A finite-mixture random-parameters approach," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 39-54.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    4. João Cotter Salvado, 2008. "The Determinants of Health Care Utilization in Portugal: An Approach with Count Data Models," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 144(III), pages 437-458, September.
    5. Murat K. Munkin, 2022. "Count Roy model with finite mixtures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1160-1181, September.
    6. Carter Allen & Yuzhou Chang & Brian Neelon & Won Chang & Hang J. Kim & Zihai Li & Qin Ma & Dongjun Chung, 2023. "A Bayesian multivariate mixture model for high throughput spatial transcriptomics," Biometrics, The International Biometric Society, vol. 79(3), pages 1775-1787, September.
    7. Büscher, Sebastian & Bauer, Dietmar, 2024. "Weighting strategies for pairwise composite marginal likelihood estimation in case of unbalanced panels and unaccounted autoregressive structure of the errors," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    8. Óscar Lourenço & Carlota Quintal & Pedro Lopes Ferreira & Pedro Pita Barros, 2007. "A equidade na utilização de cuidados de saúde em Portugal: Uma avaliação baseada em modelos de contagem," Notas Económicas, Faculty of Economics, University of Coimbra, issue 25, pages 6-26, June.
    9. William Greene, 2001. "Fixed and Random Effects in Nonlinear Models," Working Papers 01-01, New York University, Leonard N. Stern School of Business, Department of Economics.
    10. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    11. Gregory, Christian & Deb, Partha, 2016. "Who Benefits Most from SNAP?," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236648, Agricultural and Applied Economics Association.
    12. Deb, Partha & Trivedi, Pravin K., 2002. "The structure of demand for health care: latent class versus two-part models," Journal of Health Economics, Elsevier, vol. 21(4), pages 601-625, July.
    13. Anoek Castelein & Dennis Fok & Richard Paap, 2020. "A multinomial and rank-ordered logit model with inter- and intra-individual heteroscedasticity," Tinbergen Institute Discussion Papers 20-069/III, Tinbergen Institute.
    14. Relwendé Sawadogo & Gervasio Semedo, 2021. "Financial inclusion, income inequality, and institutions in sub-Saharan Africa: Identifying cross-country inequality regimes," International Economics, CEPII research center, issue 167, pages 15-28.
    15. Jie Q. Guo & Pravin K. Trivedi, 2002. "Flexible Parametric Models for Long‐tailed Patent Count Distributions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(1), pages 63-82, February.
    16. Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
    17. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2012. "A Poisson mixture model of discrete choice," Journal of Econometrics, Elsevier, vol. 166(2), pages 184-203.
    18. Alegre, Joaquín & Mateo, Sara & Pou, Llorenç, 2011. "A latent class approach to tourists’ length of stay," Tourism Management, Elsevier, vol. 32(3), pages 555-563.
    19. Bago d'Uva, Teresa & Jones, Andrew M. & van Doorslaer, Eddy, 2009. "Measurement of horizontal inequity in health care utilisation using European panel data," Journal of Health Economics, Elsevier, vol. 28(2), pages 280-289, March.
    20. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:91:y:2016:i:c:p:492-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.