IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.00473.html
   My bibliography  Save this paper

Generalized Cumulative Shrinkage Process Priors with Applications to Sparse Bayesian Factor Analysis

Author

Listed:
  • Sylvia Fruhwirth-Schnatter

Abstract

The paper discusses shrinkage priors which impose increasing shrinkage in a sequence of parameters. We review the cumulative shrinkage process (CUSP) prior of Legramanti et al. (2020), which is a spike-and-slab shrinkage prior where the spike probability is stochastically increasing and constructed from the stick-breaking representation of a Dirichlet process prior. As a first contribution, this CUSP prior is extended by involving arbitrary stick-breaking representations arising from beta distributions. As a second contribution, we prove that exchangeable spike-and-slab priors, which are popular and widely used in sparse Bayesian factor analysis, can be represented as a finite generalized CUSP prior, which is easily obtained from the decreasing order statistics of the slab probabilities. Hence, exchangeable spike-and-slab shrinkage priors imply increasing shrinkage as the column index in the loading matrix increases, without imposing explicit order constraints on the slab probabilities. An application to sparse Bayesian factor analysis illustrates the usefulness of the findings of this paper. A new exchangeable spike-and-slab shrinkage prior based on the triple gamma prior of Cadonna et al. (2020) is introduced and shown to be helpful for estimating the unknown number of factors in a simulation study.

Suggested Citation

  • Sylvia Fruhwirth-Schnatter, 2023. "Generalized Cumulative Shrinkage Process Priors with Applications to Sparse Bayesian Factor Analysis," Papers 2303.00473, arXiv.org.
  • Handle: RePEc:arx:papers:2303.00473
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.00473
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:bfi:wpaper:2014-014 is not listed on IDEAS
    2. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    3. Sirio Legramanti & Daniele Durante & David B Dunson, 2020. "Bayesian cumulative shrinkage for infinite factorizations," Biometrika, Biometrika Trust, vol. 107(3), pages 745-752.
    4. Durante, Daniele, 2017. "A note on the multiplicative gamma process," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 198-204.
    5. Kaufmann, Sylvia & Schumacher, Christian, 2019. "Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification," Journal of Econometrics, Elsevier, vol. 210(1), pages 116-134.
    6. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    7. A. Bhattacharya & D. B. Dunson, 2011. "Sparse Bayesian infinite factor models," Biometrika, Biometrika Trust, vol. 98(2), pages 291-306.
    8. Darjus Hosszejni & Sylvia Fruhwirth-Schnatter, 2022. "Cover It Up! Bipartite Graphs Uncover Identifiability in Sparse Factor Analysis," Papers 2211.00671, arXiv.org, revised Nov 2022.
    9. Carvalho, Carlos M. & Chang, Jeffrey & Lucas, Joseph E. & Nevins, Joseph R. & Wang, Quanli & West, Mike, 2008. "High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1438-1456.
    10. Annalisa Cadonna & Sylvia Frühwirth-Schnatter & Peter Knaus, 2020. "Triple the Gamma—A Unifying Shrinkage Prior for Variance and Variable Selection in Sparse State Space and TVP Models," Econometrics, MDPI, vol. 8(2), pages 1-36, May.
    11. Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvia Fruhwirth-Schnatter & Darjus Hosszejni & Hedibert Freitas Lopes, 2023. "When it counts -- Econometric identification of the basic factor model based on GLT structures," Papers 2301.06354, arXiv.org.
    2. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
    3. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    4. Sung, Bongjung & Lee, Jaeyong, 2023. "Covariance structure estimation with Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    5. Darjus Hosszejni & Sylvia Fruhwirth-Schnatter, 2022. "Cover It Up! Bipartite Graphs Uncover Identifiability in Sparse Factor Analysis," Papers 2211.00671, arXiv.org, revised Nov 2022.
    6. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    7. Florian Huber & Gary Koop, 2023. "Subspace shrinkage in conjugate Bayesian vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 556-576, June.
    8. Jaejoon Lee & Seongil Jo & Jaeyong Lee, 2022. "Robust sparse Bayesian infinite factor models," Computational Statistics, Springer, vol. 37(5), pages 2693-2715, November.
    9. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.
    10. Hauber, Philipp & Schumacher, Christian, 2021. "Precision-based sampling with missing observations: A factor model application," Discussion Papers 11/2021, Deutsche Bundesbank.
    11. Kaufmann, Sylvia & Schumacher, Christian, 2019. "Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification," Journal of Econometrics, Elsevier, vol. 210(1), pages 116-134.
    12. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
    13. Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.
    14. Mohsen Maleki & Darren Wraith, 2019. "Mixtures of multivariate restricted skew-normal factor analyzer models in a Bayesian framework," Computational Statistics, Springer, vol. 34(3), pages 1039-1053, September.
    15. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    16. Hauber, Philipp, 2022. "Real-time nowcasting with sparse factor models," EconStor Preprints 251551, ZBW - Leibniz Information Centre for Economics.
    17. Adrian Quintero & Emmanuel Lesaffre & Geert Verbeke, 2024. "Bayesian Exploratory Factor Analysis via Gibbs Sampling," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 121-142, February.
    18. Simon Beyeler & Sylvia Kaufmann, 2016. "Factor augmented VAR revisited - A sparse dynamic factor model approach," Working Papers 16.08, Swiss National Bank, Study Center Gerzensee.
    19. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2016. "Bayesian analysis of static and dynamic factor models: An ex-post approach towards the rotation problem," Journal of Econometrics, Elsevier, vol. 192(1), pages 190-206.
    20. Kelly R. Moran & Elizabeth L. Turner & David Dunson & Amy H. Herring, 2021. "Bayesian hierarchical factor regression models to infer cause of death from verbal autopsy data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 532-557, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.00473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.