IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i3p802-810.html
   My bibliography  Save this article

Parametric functional principal component analysis

Author

Listed:
  • Peijun Sang
  • Liangliang Wang
  • Jiguo Cao

Abstract

No abstract is available for this item.

Suggested Citation

  • Peijun Sang & Liangliang Wang & Jiguo Cao, 2017. "Parametric functional principal component analysis," Biometrics, The International Biometric Society, vol. 73(3), pages 802-810, September.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:3:p:802-810
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12641
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    2. Haocheng Li & John Staudenmayer & Raymond J. Carroll, 2014. "Hierarchical functional data with mixed continuous and binary measurements," Biometrics, The International Biometric Society, vol. 70(4), pages 802-811, December.
    3. Kehui Chen & Jing Lei, 2015. "Localized Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1266-1275, September.
    4. Zhenhua Lin & Liangliang Wang & Jiguo Cao, 2016. "Interpretable functional principal component analysis," Biometrics, The International Biometric Society, vol. 72(3), pages 846-854, September.
    5. Besse, Philippe, 1992. "PCA stability and choice of dimensionality," Statistics & Probability Letters, Elsevier, vol. 13(5), pages 405-410, April.
    6. Besse, Philippe C. & Cardot, Herve & Ferraty, Frederic, 1997. "Simultaneous non-parametric regressions of unbalanced longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 24(3), pages 255-270, May.
    7. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    8. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haolun Shi & Jiguo Cao, 2022. "Robust Functional Principal Component Analysis Based on a New Regression Framework," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 523-543, September.
    2. Nie, Yunlong & Cao, Jiguo, 2020. "Sparse functional principal component analysis in a new regression framework," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    3. Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.
    4. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    5. Zhou, Zhiyang, 2019. "Functional continuum regression," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 328-346.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Yunlong & Cao, Jiguo, 2020. "Sparse functional principal component analysis in a new regression framework," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    2. Haolun Shi & Jiguo Cao, 2022. "Robust Functional Principal Component Analysis Based on a New Regression Framework," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 523-543, September.
    3. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    5. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    6. Park, So Young & Xiao, Luo & Willbur, Jayson D. & Staicu, Ana-Maria & Jumbe, N. L’ntshotsholé, 2018. "A joint design for functional data with application to scheduling ultrasound scans," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 101-114.
    7. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    8. Beran, Jan & Liu, Haiyan, 2016. "Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 218-233.
    9. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    10. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    11. Kokoszka, Piotr & Reimherr, Matthew, 2013. "Asymptotic normality of the principal components of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1546-1562.
    12. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    13. Gertheiss, Jan & Goldsmith, Jeff & Staicu, Ana-Maria, 2017. "A note on modeling sparse exponential-family functional response curves," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 46-52.
    14. Kehui Chen & Xiaoke Zhang & Alexander Petersen & Hans-Georg Müller, 2017. "Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 582-604, December.
    15. Sun, Xuxue & Cai, Wenjun & Li, Mingyang, 2021. "A hierarchical modeling approach for degradation data with mixed-type covariates and latent heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Daniel Backenroth & Russell T. Shinohara & Jennifer A. Schrack & Jeff Goldsmith, 2020. "Nonnegative decomposition of functional count data," Biometrics, The International Biometric Society, vol. 76(4), pages 1273-1284, December.
    17. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    18. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    19. Park, Juhyun & Gasser, Theo & Rousson, Valentin, 2009. "Structural components in functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3452-3465, July.
    20. Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised May 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:3:p:802-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.