IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i2p670-685.html
   My bibliography  Save this article

Cross validation based transfer learning for cross-sectional non-linear shrinkage: A data-driven approach in portfolio optimization

Author

Listed:
  • Mörstedt, Torsten
  • Lutz, Bernhard
  • Neumann, Dirk

Abstract

Enhanced covariance estimation approaches, such as (non-)linear shrinkage, are well established in the literature. Non-linear shrinkage estimators generally minimize a certain loss function regarding statistical assumptions about the future covariance matrix. At the same time, the problem of covariance estimation is traditionally considered from a rather restrictive view since the only available data to determine the estimation parameters is given by the return history of the actual portfolio constituents. In this study, we propose a novel and purely data-driven perspective on covariance estimation. We present a non-linear shrinkage estimator that determines the estimation parameters using cross validation to be historically optimal on a disjoint dataset of assets according to the given objective, such as minimum variance or maximum risk-adjusted return. We then transfer the historically optimal estimation parameters learned on the disjoint dataset to the actual covariance estimation problem. Thereby, the sample eigenvalues are corrected in a purely data-driven way, agnostic to theoretically derived parameters. Another benefit of focusing on disjoint data is that we address the problem of limited data availability in high-dimensional estimation problems when the number of assets exceeds the history length. Our empirical evaluation, based on a total of six stock market indices and various problem dimensions, shows that our approach outperforms existing cross-sectional estimators in minimizing variance and maximizing risk-adjusted return. While our study is limited to the cross-section, the method of parameter selection using cross validation and transfer learning can also be combined with other estimators, such as time-series methods.

Suggested Citation

  • Mörstedt, Torsten & Lutz, Bernhard & Neumann, Dirk, 2024. "Cross validation based transfer learning for cross-sectional non-linear shrinkage: A data-driven approach in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(2), pages 670-685.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:670-685
    DOI: 10.1016/j.ejor.2024.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724003436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:670-685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.