IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0606015.html
   My bibliography  Save this paper

On the Feasibility of Portfolio Optimization under Expected Shortfall

Author

Listed:
  • Stefano Ciliberti
  • Imre Kondor
  • Marc Mezard

Abstract

We address the problem of portfolio optimization under the simplest coherent risk measure, i.e. the expected shortfall. As it is well known, one can map this problem into a linear programming setting. For some values of the external parameters, when the available time series is too short, the portfolio optimization is ill posed because it leads to unbounded positions, infinitely short on some assets and infinitely long on some others. As first observed by Kondor and coworkers, this phenomenon is actually a phase transition. We investigate the nature of this transition by means of a replica approach.

Suggested Citation

  • Stefano Ciliberti & Imre Kondor & Marc Mezard, 2006. "On the Feasibility of Portfolio Optimization under Expected Shortfall," Papers physics/0606015, arXiv.org.
  • Handle: RePEc:arx:papers:physics/0606015
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0606015
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    2. Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
    3. Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007. "Noise sensitivity of portfolio selection under various risk measures," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    2. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    3. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    4. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    5. Fermanian, Jean-David & Scaillet, Olivier, 2005. "Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 927-958, April.
    6. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    7. Marcell Béli & Kata Váradi, 2017. "A possible methodology for determining the initial margin," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 16(2), pages 119-147.
    8. Fabio Caccioli & Imre Kondor & G'abor Papp, 2015. "Portfolio Optimization under Expected Shortfall: Contour Maps of Estimation Error," Papers 1510.04943, arXiv.org.
    9. Karma, Otto & Sander, Priit, 2006. "The impact of financial leverage on risk of equity measured by loss-oriented risk measures: An option pricing approach," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1340-1356, December.
    10. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    11. Jing Li & Mingxin Xu, 2013. "Optimal Dynamic Portfolio with Mean-CVaR Criterion," Risks, MDPI, vol. 1(3), pages 1-29, November.
    12. Osmundsen, Kjartan Kloster, 2018. "Using expected shortfall for credit risk regulation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 80-93.
    13. Cerqueti, Roy & Giacalone, Massimiliano & Panarello, Demetrio, 2019. "A Generalized Error Distribution Copula-based method for portfolios risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 687-695.
    14. Szego, Giorgio, 2005. "Measures of risk," European Journal of Operational Research, Elsevier, vol. 163(1), pages 5-19, May.
    15. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, December.
    16. Alessandra Carleo & Francesco Cesarone & Andrea Gheno & Jacopo Maria Ricci, 2017. "Approximating exact expected utility via portfolio efficient frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 115-143, November.
    17. Liu, Qingfu & An, Yunbi, 2014. "Risk contributions of trading and non-trading hours: Evidence from Chinese commodity futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 17-29.
    18. Giacomo Livan & Jun-ichi Inoue & Enrico Scalas, 2012. "On the non-stationarity of financial time series: impact on optimal portfolio selection," Papers 1205.0877, arXiv.org, revised Jul 2012.
    19. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
    20. Imre Kondor & Andras Szepessy & Tunde Ujvarosi, 2003. "Concave risk measures in international capital regulation," Papers cond-mat/0307244, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0606015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.