IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v55y2007i2p201-207.html
   My bibliography  Save this article

Large dimension forecasting models and random singular value spectra

Author

Listed:
  • J.-P. Bouchaud
  • L. Laloux
  • M. A. Miceli
  • M. Potters

Abstract

We present a general method to detect and extract from a finite time sample statistically meaningful correlations between input and output variables of large dimensionality. Our central result is derived from the theory of free random matrices, and gives an explicit expression for the interval where singular values are expected in the absence of any true correlations between the variables under study. Our result can be seen as the natural generalization of the Marčenko-Pastur distribution for the case of rectangular correlation matrices. We illustrate the interest of our method on a set of macroeconomic time series. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Suggested Citation

  • J.-P. Bouchaud & L. Laloux & M. A. Miceli & M. Potters, 2007. "Large dimension forecasting models and random singular value spectra," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 201-207, January.
  • Handle: RePEc:spr:eurphb:v:55:y:2007:i:2:p:201-207
    DOI: 10.1140/epjb/e2006-00204-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2006-00204-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2006-00204-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
    3. George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
    4. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoly Biely & Stefan Thurner, 2008. "Random matrix ensembles of time-lagged correlation matrices: derivation of eigenvalue spectra and analysis of financial time-series," Quantitative Finance, Taylor & Francis Journals, vol. 8(7), pages 705-722.
    2. Yongcheng Qi & Mengzi Xie, 2020. "Spectral Radii of Products of Random Rectangular Matrices," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2185-2212, December.
    3. Linda Margarita Medina Herrera & Ernesto Armando Pacheco Velazquez, 2013. "Spectral Analysis And Networks In Financial Correlation Matrices, Analisis Espectral Y Redes En Matrices De Correlacion Financiera," Revista Internacional Administracion & Finanzas, The Institute for Business and Finance Research, vol. 6(6), pages 15-28.
    4. Reigneron, Pierre-Alain & Allez, Romain & Bouchaud, Jean-Philippe, 2011. "Principal regression analysis and the index leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(17), pages 3026-3035.
    5. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    6. Anna Bykhovskaya & Vadim Gorin, 2023. "High-Dimensional Canonical Correlation Analysis," Papers 2306.16393, arXiv.org, revised Aug 2023.
    7. Romain Allez & Jean-Philippe Bouchaud, 2012. "Eigenvector dynamics: general theory and some applications," Papers 1203.6228, arXiv.org, revised Jul 2012.
    8. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    9. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    10. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.
    11. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    12. Zeng, Xingyuan, 2017. "Limiting empirical distribution for eigenvalues of products of random rectangular matrices," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 33-40.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Philippe Bouchaud & Laurent Laloux & M. Augusta Miceli & Marc Potters, 2005. "Large dimension forecasting models and random singular value spectra," Science & Finance (CFM) working paper archive 500066, Science & Finance, Capital Fund Management.
    2. Xu Han & Mehmet Caner, 2017. "Determining the number of factors with potentially strong within-block correlations in error terms," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 946-969, October.
    3. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    4. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas Quising, 2006. "Forecasting Inflation and GDP growth: Comparison of Automatic Leading Indicator (ALI) Method with Macro Econometric Structural Models (MESMs)," Working Papers 554, Queen Mary University of London, School of Economics and Finance.
    5. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas Quising, 2006. "Forecasting Inflation and GDP growth: Comparison of Automatic Leading Indicator (ALI) Method with Macro Econometric Structural Models (MESMs)," Working Papers 554, Queen Mary University of London, School of Economics and Finance.
    6. Duo Qin & Marie Anne Cagas & Geoffrey Ducanes & Nedelyn Magtibay-Ramos & Pilipinas Quising, 2007. "Automatic Leading Indicators (ALIs) versus Macro Econometric Structural Models (MESMs): Comparison of Inflation and GDP growth Forecasting," EcoMod2007 23900072, EcoMod.
    7. Claudio Morana, 2010. "Heteroskedastic Factor Vector Autoregressive Estimation of Persistent and Non Persistent Processes Subject to Structural Breaks," ICER Working Papers - Applied Mathematics Series 36-2010, ICER - International Centre for Economic Research.
    8. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    9. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    10. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    11. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    12. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    13. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    14. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    15. Andrés García-Medina & Graciela González Farías, 2020. "Transfer entropy as a variable selection methodology of cryptocurrencies in the framework of a high dimensional predictive model," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-31, January.
    16. Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018. "Dynamic factor model with infinite‐dimensional factor space: Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
    17. Jiahe Lin & George Michailidis, 2019. "Approximate Factor Models with Strongly Correlated Idiosyncratic Errors," Papers 1912.04123, arXiv.org.
    18. Romain Houssa & Lasse Bork & Hans Dewachter, 2008. "Identification of Macroeconomic Factors in Large Panels," Working Papers 1010, University of Namur, Department of Economics.
    19. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    20. repec:hum:wpaper:sfb649dp2010-039 is not listed on IDEAS
    21. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:55:y:2007:i:2:p:201-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.