IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v34y2015i5p739-754.html
   My bibliography  Save this article

The Economic Value of Online Reviews

Author

Listed:
  • Chunhua Wu

    (Sauder School of Business, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada)

  • Hai Che

    (Kelley School of Business, Indiana University, Bloomington, Indiana 47405)

  • Tat Y. Chan

    (Olin Business School, Washington University in St. Louis, St. Louis, Missouri 63130)

  • Xianghua Lu

    (School of Management, Fudan University, 200433 Shanghai, China)

Abstract

This paper investigates the economic value of online reviews for consumers and restaurants. We use a data set from Dianping.com , a leading Chinese website providing user-generated reviews, to study how consumers learn, from reading online reviews, the quality and cost of restaurant dining. We propose a learning model with three novel features: (1) different reviews offer different informational value to different types of consumers; (2) consumers learn their own preferences, and not the distribution of preferences among the entire population, for multiple product attributes; and (3) consumers update not only the expectation but also the variance of their preferences. Based on estimation results, we conduct a series of counterfactual experiments and find that the value from Dianping is about 7 CNY for each user, and about 8.6 CNY from each user for the reviewed restaurants in this study. The majority of the value comes from reviews on restaurant quality, and contextual comments are more valuable than numerical ratings in reviews.

Suggested Citation

  • Chunhua Wu & Hai Che & Tat Y. Chan & Xianghua Lu, 2015. "The Economic Value of Online Reviews," Marketing Science, INFORMS, vol. 34(5), pages 739-754, September.
  • Handle: RePEc:inm:ormksc:v:34:y:2015:i:5:p:739-754
    DOI: 10.1287/mksc.2015.0926
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.2015.0926
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2015.0926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tülin Erdem & Michael P. Keane & Baohong Sun, 2008. "A Dynamic Model of Brand Choice When Price and Advertising Signal Product Quality," Marketing Science, INFORMS, vol. 27(6), pages 1111-1125, 11-12.
    2. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    3. Tat Chan & Chakravarthi Narasimhan & Ying Xie, 2013. "Treatment Effectiveness and Side Effects: A Model of Physician Learning," Management Science, INFORMS, vol. 59(6), pages 1309-1325, June.
    4. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    5. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    6. Gregory S. Crawford & Matthew Shum, 2005. "Uncertainty and Learning in Pharmaceutical Demand," Econometrica, Econometric Society, vol. 73(4), pages 1137-1173, July.
    7. Hai Che & Tülin Erdem & T. Öncü, 2015. "Consumer learning and evolution of consumer brand preferences," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 173-202, September.
    8. John H. Roberts & Glen L. Urban, 1988. "Modeling Multiattribute Utility, Risk, and Belief Dynamics for New Consumer Durable Brand Choice," Management Science, INFORMS, vol. 34(2), pages 167-185, February.
    9. Tat Y. Chan & Barton H. Hamilton, 2006. "Learning, Private Information, and the Economic Evaluation of Randomized Experiments," Journal of Political Economy, University of Chicago Press, vol. 114(6), pages 997-1040, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yan, 2017. "Essays on preference formation and home production," Other publications TiSEM b028fd7e-53ba-4ff6-97eb-4, Tilburg University, School of Economics and Management.
    2. Jie Bai, 2016. "Melons as Lemons: Asymmetric Information, Consumer Learning and Seller Reputation," Natural Field Experiments 00540, The Field Experiments Website.
    3. Ching, Andrew T. & Erdem, Tülin & Keane, Michael P., 2014. "A simple method to estimate the roles of learning, inventories and category consideration in consumer choice," Journal of choice modelling, Elsevier, vol. 13(C), pages 60-72.
    4. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.
    5. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    6. Hai Che & Tülin Erdem & T. Sabri Öncü, 2015. "Consumer learning and evolution of consumer brand preferences," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 173-202, September.
    7. van Ewijk, Bernadette J. & Gijsbrechts, Els & Steenkamp, Jan-Benedict E.M., 2022. "The dark side of innovation: How new SKUs affect brand choice in the presence of consumer uncertainty and learning," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 967-987.
    8. Mandy Mantian Hu & Sha Yang & Daniel Yi Xu, 2019. "Understanding the Social Learning Effect in Contagious Switching Behavior," Management Science, INFORMS, vol. 65(10), pages 4771-4794, October.
    9. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2017. "Empirical Models of Learning Dynamics: A Survey of Recent Developments," International Series in Operations Research & Management Science, in: Berend Wierenga & Ralf van der Lans (ed.), Handbook of Marketing Decision Models, edition 2, chapter 0, pages 223-257, Springer.
    10. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    11. S. Sriram & Pradeep K. Chintagunta & Puneet Manchanda, 2015. "Service Quality Variability and Termination Behavior," Management Science, INFORMS, vol. 61(11), pages 2739-2759, November.
    12. Jürgen Maurer & Katherine M. Harris, 2016. "Learning to Trust Flu Shots: Quasi‐Experimental Evidence from the 2009 Swine Flu Pandemic," Health Economics, John Wiley & Sons, Ltd., vol. 25(9), pages 1148-1162, September.
    13. Bernhard Ganglmair & Timothy Simcoe & Emanuele Tarantino, 2018. "Learning When to Quit: An Empirical Model of Experimentation," NBER Working Papers 24358, National Bureau of Economic Research, Inc.
    14. Guofang Huang & Hong Luo & Jing Xia, 2019. "Invest in Information or Wing It? A Model of Dynamic Pricing with Seller Learning," Management Science, INFORMS, vol. 65(12), pages 5556-5583, December.
    15. Hai Che & Tülin Erdem & T. Öncü, 2015. "Consumer learning and evolution of consumer brand preferences," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 173-202, September.
    16. Andrew T. Ching & Hyunwoo Lim, 2020. "A Structural Model of Correlated Learning and Late-Mover Advantages: The Case of Statins," Management Science, INFORMS, vol. 66(3), pages 1095-1123, March.
    17. Matthew Grennan & Robert J. Town, 2020. "Regulating Innovation with Uncertain Quality: Information, Risk, and Access in Medical Devices," American Economic Review, American Economic Association, vol. 110(1), pages 120-161, January.
    18. Zhu, Z.;, 2023. "The Value of Patients: Heterogenous Physician Learning and Generic Drug Diffusion," Health, Econometrics and Data Group (HEDG) Working Papers 23/12, HEDG, c/o Department of Economics, University of York.
    19. Maurer, J. & Harris, K.M., 2015. "Learning to trust flu shots: quasi-experimental evidence on the role of learning in influenza vaccination decisions from the 2009 influenza A/H1N1 (swine flu) pandemic," Health, Econometrics and Data Group (HEDG) Working Papers 15/19, HEDG, c/o Department of Economics, University of York.
    20. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:34:y:2015:i:5:p:739-754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.