IDEAS home Printed from https://ideas.repec.org/f/pca1603.html
   My authors  Follow this author

Juan-Juan Cai

Personal Details

First Name:Juan-Juan
Middle Name:
Last Name:Cai
Suffix:
RePEc Short-ID:pca1603
[This author has chosen not to make the email address public]
https://research.vu.nl/en/persons/juan-juan-cai

Affiliation

School of Business and Economics
Vrije Universiteit Amsterdam

Amsterdam, Netherlands
http://sbe.vu.nl/
RePEc:edi:fewvunl (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. de Valk, Cees Fouad & Cai, Juan-Juan, 2018. "A high quantile estimator based on the log-generalized Weibull tail limit," LIDAM Reprints ISBA 2018030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  2. Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
  3. Cai, J. & Einmahl, J.H.J. & de Haan, L.F.M. & Zhou, C., 2012. "Estimation of the Marginal Expected Shortfall : The Mean when a Related Variable is Extreme," Discussion Paper 2012-080, Tilburg University, Center for Economic Research.
  4. Cai, J. & Einmahl, J.H.J. & de Haan, L.F.M., 2011. "Estimation of extreme risk regions under multivariate regular variation," Other publications TiSEM b7a72a8d-f9bc-4129-ae9b-a, Tilburg University, School of Economics and Management.

Articles

  1. Juan‐Juan Cai & Eni Musta, 2020. "Estimation of the marginal expected shortfall under asymptotic independence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(1), pages 56-83, March.
  2. de Valk, Cees & Cai, Juan-Juan, 2018. "A high quantile estimator based on the log-generalized Weibull tail limit," Econometrics and Statistics, Elsevier, vol. 6(C), pages 107-128.
  3. Juan-Juan Cai & John H. J. Einmahl & Laurens Haan & Chen Zhou, 2015. "Estimation of the marginal expected shortfall: the mean when a related variable is extreme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 417-442, March.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. de Valk, Cees Fouad & Cai, Juan-Juan, 2018. "A high quantile estimator based on the log-generalized Weibull tail limit," LIDAM Reprints ISBA 2018030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Cited by:

    1. Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.
    2. Albert, Clément & Dutfoy, Anne & Gardes, Laurent & Girard, Stéphane, 2020. "An extreme quantile estimator for the log-generalized Weibull-tail model," Econometrics and Statistics, Elsevier, vol. 13(C), pages 137-174.

  2. Cai, J. & Einmahl, J.H.J. & de Haan, L.F.M. & Zhou, C., 2012. "Estimation of the Marginal Expected Shortfall : The Mean when a Related Variable is Extreme," Discussion Paper 2012-080, Tilburg University, Center for Economic Research.

    Cited by:

    1. Chen, Yu & Gao, Yu & Shu, Lei & Zhu, Xiaonan, 2023. "Network effects on risk co-movements: A network quantile autoregression-based analysis," Finance Research Letters, Elsevier, vol. 56(C).
    2. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2017. "Extreme M-quantiles as risk measures: From L1 to Lp optimization," TSE Working Papers 17-841, Toulouse School of Economics (TSE).
    3. S. Tavolaro & F. Visnovsky, 2014. "What is the information content of the SRISK measure as a supervisory tool?," Débats économiques et financiers 10, Banque de France.
    4. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    5. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.
    6. N. V. Gribkova & J. Su & R. Zitikis, 2022. "Empirical tail conditional allocation and its consistency under minimal assumptions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 713-735, August.
    7. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Multivariate tail conditional expectation for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 216-223.
    8. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
    9. Mao, Tiantian & Stupfler, Gilles & Yang, Fan, 2023. "Asymptotic properties of generalized shortfall risk measures for heavy-tailed risks," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 173-192.
    10. Popescu, Alexandra & Turcu, Camelia, 2017. "Sovereign debt and systemic risk in the eurozone," Economic Modelling, Elsevier, vol. 67(C), pages 275-284.
    11. Bousebata, Meryem & Enjolras, Geoffroy & Girard, Stéphane, 2023. "Extreme partial least-squares," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    12. Das, Bikramjit & Fasen-Hartmann, Vicky, 2018. "Risk contagion under regular variation and asymptotic tail independence," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 194-215.
    13. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2023. "Nonparametric estimation of conditional marginal excess moments," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    14. Laurent Gardes & Stéphane Girard & Gilles Stupfler, 2020. "Beyond tail median and conditional tail expectation: Extreme risk estimation using tail Lp‐optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 922-949, September.
    15. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    16. Qin, Xiao & Zhou, Chunyang, 2019. "Financial structure and determinants of systemic risk contribution," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    17. Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
    18. Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
    19. Cristina Zeldea, 2020. "Modeling the Connection between Bank Systemic Risk and Balance-Sheet Liquidity Proxies through Random Forest Regressions," Administrative Sciences, MDPI, vol. 10(3), pages 1-14, August.
    20. Takashi Isogai, 2014. "Benchmarking of Unconditional VaR and ES Calculation Methods: A Comparative Simulation Analysis with Truncated Stable Distribution," Bank of Japan Working Paper Series 14-E-1, Bank of Japan.
    21. Goegebeur, Yuri & Guillou, Armelle & Qin, Jing, 2024. "Dependent conditional tail expectation for extreme levels," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
    22. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    23. Qin, Xiao & Zhou, Chen, 2021. "Systemic risk allocation using the asymptotic marginal expected shortfall," Journal of Banking & Finance, Elsevier, vol. 126(C).
    24. Hou, Yanxi & Wang, Xing, 2019. "Nonparametric inference for distortion risk measures on tail regions," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 92-110.
    25. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    26. Gribkova, N.V. & Su, J. & Zitikis, R., 2022. "Inference for the tail conditional allocation: Large sample properties, insurance risk assessment, and compound sums of concomitants," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 199-222.
    27. Andrea Teruzzi, 2023. "Tail Risk and Systemic Risk Estimation of Cryptocurrencies: an Expectiles and Marginal Expected Shortfall based approach," Papers 2311.17239, arXiv.org.
    28. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    29. Ling, Chengxiu, 2019. "Asymptotics of multivariate conditional risk measures for Gaussian risks," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 205-215.
    30. Beck, Nicholas & Di Bernardino, Elena & Mailhot, Mélina, 2021. "Semi-parametric estimation of multivariate extreme expectiles," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    31. Asimit, Alexandru V. & Li, Jinzhu, 2016. "Extremes for coherent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 332-341.
    32. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2023. "A Weissman-type estimator of the conditional marginal expected shortfall," Econometrics and Statistics, Elsevier, vol. 27(C), pages 173-196.
    33. Liu, Ruicheng & Pun, Chi Seng, 2022. "Machine-Learning-enhanced systemic risk measure: A Two-Step supervised learning approach," Journal of Banking & Finance, Elsevier, vol. 136(C).
    34. Beatriz de la Flor & Javier Ojea-Ferreiro & Eva Ferreira, 2022. "The Hedging Cost of Forgetting the Exchange Rate," Documentos de Trabajo del ICAE 2022-01, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    35. Areski Cousin & Elena Di Bernardino, 2013. "On Multivariate Extensions of Conditional-Tail-Expectation," Working Papers hal-00877386, HAL.
    36. Bikramjit Das & Vicky Fasen, 2016. "Risk contagion under regular variation and asymptotic tail independence," Papers 1603.09406, arXiv.org, revised Apr 2017.

  3. Cai, J. & Einmahl, J.H.J. & de Haan, L.F.M., 2011. "Estimation of extreme risk regions under multivariate regular variation," Other publications TiSEM b7a72a8d-f9bc-4129-ae9b-a, Tilburg University, School of Economics and Management.

    Cited by:

    1. Berthet, Philippe & Einmahl, John, 2020. "Cube Root Weak Convergence of Empirical Estimators of a Density Level Set," Discussion Paper 2020-015, Tilburg University, Center for Economic Research.
    2. Einmahl, John & Yang, Fan & Zhou, Chen, 2018. "Testing the Multivariate Regular Variation Model," Other publications TiSEM dd3c4dd0-7181-40f3-af44-f, Tilburg University, School of Economics and Management.
    3. Hubert, Mia & Dierckx, Goedele & Vanpaemel, Dina, 2013. "Detecting influential data points for the Hill estimator in Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 13-28.
    4. Einmahl, J.H.J. & Li, Jun & Liu, Regina, 2015. "Bridging Centrality and Extremity : Refining Empirical Data Depth using Extreme Value Statistics," Other publications TiSEM bcd9783a-e07e-4da2-bc47-b, Tilburg University, School of Economics and Management.
    5. Pere, Jaakko & Ilmonen, Pauliina & Viitasaari, Lauri, 2024. "On extreme quantile region estimation under heavy-tailed elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    6. Yi He & John H. J. Einmahl, 2017. "Estimation of extreme depth-based quantile regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
    7. Virta, Joni & Lietzén, Niko & Viitasaari, Lauri & Ilmonen, Pauliina, 2024. "Latent model extreme value index estimation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    8. Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Discussion Paper 2023-001, Tilburg University, Center for Economic Research.
    9. Yves Dominicy & Pauliina Ilmonen & David Veredas, 2017. "Multivariate Hill Estimators," International Statistical Review, International Statistical Institute, vol. 85(1), pages 108-142, April.
    10. Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Other publications TiSEM 261583f5-c571-48c6-8cea-9, Tilburg University, School of Economics and Management.

Articles

  1. Juan‐Juan Cai & Eni Musta, 2020. "Estimation of the marginal expected shortfall under asymptotic independence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(1), pages 56-83, March.

    Cited by:

    1. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.
    2. N. V. Gribkova & J. Su & R. Zitikis, 2022. "Empirical tail conditional allocation and its consistency under minimal assumptions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 713-735, August.
    3. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
    4. Goegebeur, Yuri & Guillou, Armelle & Qin, Jing, 2024. "Dependent conditional tail expectation for extreme levels," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
    5. Gribkova, N.V. & Su, J. & Zitikis, R., 2022. "Inference for the tail conditional allocation: Large sample properties, insurance risk assessment, and compound sums of concomitants," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 199-222.
    6. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.

  2. de Valk, Cees & Cai, Juan-Juan, 2018. "A high quantile estimator based on the log-generalized Weibull tail limit," Econometrics and Statistics, Elsevier, vol. 6(C), pages 107-128.
    See citations under working paper version above.
  3. Juan-Juan Cai & John H. J. Einmahl & Laurens Haan & Chen Zhou, 2015. "Estimation of the marginal expected shortfall: the mean when a related variable is extreme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 417-442, March.
    See citations under working paper version above.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Juan-Juan Cai should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.