IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1603.09406.html
   My bibliography  Save this paper

Risk contagion under regular variation and asymptotic tail independence

Author

Listed:
  • Bikramjit Das
  • Vicky Fasen

Abstract

Risk contagion concerns any entity dealing with large scale risks. Suppose (X,Y) denotes a risk vector pertaining to two components in some system. A relevant measurement of risk contagion would be to quantify the amount of influence of high values of Y on X. This can be measured in a variety of ways. In this paper, we study two such measures: the quantity E[max(X-t,0)|Y > t] called Marginal Mean Excess (MME) as well as the related quantity E[X|Y > t] called Marginal Expected Shortfall (MES). Both quantities are indicators of risk contagion and useful in various applications ranging from finance, insurance and systemic risk to environmental and climate risk. We work under the assumptions of multivariate regular variation, hidden regular variation and asymptotic tail independence for the risk vector (X,Y). Many broad and useful model classes satisfy these assumptions. We present several examples and derive the asymptotic behavior of both MME and MES as the threshold t tends to infinity. We observe that although we assume asymptotic tail independence in the models, MME and MES converge to 1 under very general conditions; this reflects that the underlying weak dependence in the model still remains significant. Besides the consistency of the empirical estimators, we introduce an extrapolation method based on extreme value theory to estimate both MME and MES for high thresholds t where little data are available. We show that these estimators are consistent and illustrate our methodology in both simulated and real data sets.

Suggested Citation

  • Bikramjit Das & Vicky Fasen, 2016. "Risk contagion under regular variation and asymptotic tail independence," Papers 1603.09406, arXiv.org, revised Apr 2017.
  • Handle: RePEc:arx:papers:1603.09406
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1603.09406
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan-Juan Cai & John H. J. Einmahl & Laurens Haan & Chen Zhou, 2015. "Estimation of the marginal expected shortfall: the mean when a related variable is extreme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 417-442, March.
    2. Francesca Biagini & Jean-Pierre Fouque & Marco Frittelli & Thilo Meyer-Brandis, 2015. "A Unified Approach to Systemic Risk Measures via Acceptance Sets," Papers 1503.06354, arXiv.org, revised Apr 2015.
    3. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    4. Hua, Lei & Joe, Harry, 2012. "Tail Comonotonicity and Conservative Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 42(2), pages 601-629, November.
    5. Grant B. Weller & Daniel Cooley, 2014. "A sum characterization of hidden regular variation with likelihood inference via expectation-maximization," Biometrika, Biometrika Trust, vol. 101(1), pages 17-36.
    6. Li Zhu & Haijun Li, 2012. "Asymptotic Analysis of Multivariate Tail Conditional Expectations," North American Actuarial Journal, Taylor & Francis Journals, vol. 16(3), pages 350-363.
    7. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    8. Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
    9. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Bikramjit & Fasen-Hartmann, Vicky, 2018. "Risk contagion under regular variation and asymptotic tail independence," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 194-215.
    2. Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
    3. Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
    4. Asimit, Alexandru V. & Li, Jinzhu, 2016. "Extremes for coherent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 332-341.
    5. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.
    6. Gribkova, N.V. & Su, J. & Zitikis, R., 2022. "Inference for the tail conditional allocation: Large sample properties, insurance risk assessment, and compound sums of concomitants," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 199-222.
    7. c{C}au{g}{i}n Ararat & Birgit Rudloff, 2016. "Dual representations for systemic risk measures," Papers 1607.03430, arXiv.org, revised Jul 2019.
    8. Aditya Maheshwari & Andrey Sarantsev, 2017. "Modeling Financial System with Interbank Flows, Borrowing, and Investing," Papers 1707.03542, arXiv.org, revised Oct 2018.
    9. Mao, Tiantian & Stupfler, Gilles & Yang, Fan, 2023. "Asymptotic properties of generalized shortfall risk measures for heavy-tailed risks," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 173-192.
    10. Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Discussion Paper 2023-001, Tilburg University, Center for Economic Research.
    11. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    12. Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
    13. Yannick Armenti & Stéphane Crépey & Samuel Drapeau & Antonis Papapantoleon, 2018. "Multivariate Shortfall Risk Allocation and Systemic Risk," Working Papers hal-01764398, HAL.
    14. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    15. Bernard, Carole & Czado, Claudia, 2015. "Conditional quantiles and tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 104-126.
    16. Tankov, Peter, 2016. "Tails of weakly dependent random vectors," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 73-86.
    17. Yu-Sin Chang, 2018. "Systemic Risk and the Dependence Structures," Papers 1809.03425, arXiv.org.
    18. Jaunė, Eglė & Šiaulys, Jonas, 2022. "Asymptotic risk decomposition for regularly varying distributions with tail dependence," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    19. Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Other publications TiSEM 261583f5-c571-48c6-8cea-9, Tilburg University, School of Economics and Management.
    20. Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1603.09406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.