IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v171y2024ics030441492400036x.html
   My bibliography  Save this article

Dependent conditional tail expectation for extreme levels

Author

Listed:
  • Goegebeur, Yuri
  • Guillou, Armelle
  • Qin, Jing

Abstract

We consider the estimation of the dependent conditional tail expectation, defined for a random vector (X,Y) with X≥0 as E(X|X>QX(1−p),Y>QY(1−p)), when E(X)<∞, and where QX and QY denote the quantile functions of X and Y, respectively. The distribution of X is assumed to be of Pareto-type while the distribution of Y is kept general. Using extreme-value arguments we introduce an estimator for this risk measure for the situation p≤1/n, where n is the number of available observations, i.e., focus is on estimation with extrapolation. The convergence in distribution of our estimator is established and its finite sample performance is illustrated on a simulation study. The method is then applied on wind gusts data set.

Suggested Citation

  • Goegebeur, Yuri & Guillou, Armelle & Qin, Jing, 2024. "Dependent conditional tail expectation for extreme levels," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:spapps:v:171:y:2024:i:c:s030441492400036x
    DOI: 10.1016/j.spa.2024.104330
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492400036X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104330?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan-Juan Cai & John H. J. Einmahl & Laurens Haan & Chen Zhou, 2015. "Estimation of the marginal expected shortfall: the mean when a related variable is extreme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 417-442, March.
    2. Khreshna Syuhada & Oki Neswan & Bony Parulian Josaphat, 2022. "Estimating Copula-Based Extension of Tail Value-at-Risk and Its Application in Insurance Claim," Risks, MDPI, vol. 10(6), pages 1-26, May.
    3. Elena Di Bernardino & Clémentine Prieur, 2018. "Estimation of the multivariate conditional tail expectation for extreme risk levels: Illustration on environmental data sets," Environmetrics, John Wiley & Sons, Ltd., vol. 29(7), November.
    4. Goegebeur, Yuri & Guillou, Armelle & Pedersen, Tine & Qin, Jing, 2022. "Extreme-value based estimation of the conditional tail moment with application to reinsurance rating," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 102-122.
    5. Mikael Escobar-Bach & Yuri Goegebeur & Armelle Guillou & Alexandre You, 2017. "Bias-corrected and robust estimation of the bivariate stable tail dependence function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 284-307, June.
    6. Juan‐Juan Cai & Eni Musta, 2020. "Estimation of the marginal expected shortfall under asymptotic independence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(1), pages 56-83, March.
    7. Das, Bikramjit & Fasen-Hartmann, Vicky, 2018. "Risk contagion under regular variation and asymptotic tail independence," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 194-215.
    8. Beirlant, Jan & Escobar-Bach, Mikael & Goegebeur, Yuri & Guillou, Armelle, 2016. "Bias-corrected estimation of stable tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 453-466.
    9. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2023. "A Weissman-type estimator of the conditional marginal expected shortfall," Econometrics and Statistics, Elsevier, vol. 27(C), pages 173-196.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2023. "Nonparametric estimation of conditional marginal excess moments," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    2. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2023. "A Weissman-type estimator of the conditional marginal expected shortfall," Econometrics and Statistics, Elsevier, vol. 27(C), pages 173-196.
    3. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    4. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.
    5. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
    6. Beck, Nicholas & Di Bernardino, Elena & Mailhot, Mélina, 2021. "Semi-parametric estimation of multivariate extreme expectiles," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    7. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Multivariate tail conditional expectation for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 216-223.
    8. Yuri Goegebeur & Armelle Guillou & Jing Qin, 2024. "Estimation of the conditional tail moment for Weibull‐type distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(4), pages 1782-1815, December.
    9. Mikael Escobar-Bach & Yuri Goegebeur & Armelle Guillou & Alexandre You, 2017. "Bias-corrected and robust estimation of the bivariate stable tail dependence function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 284-307, June.
    10. Ortega-Jiménez, P. & Sordo, M.A. & Suárez-Llorens, A., 2021. "Stochastic orders and multivariate measures of risk contagion," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 199-207.
    11. Asimit, Alexandru V. & Li, Jinzhu, 2016. "Extremes for coherent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 332-341.
    12. Härdle, Wolfgang Karl & Ling, Chengxiu, 2018. "How Sensitive are Tail-related Risk Measures in a Contamination Neighbourhood?," IRTG 1792 Discussion Papers 2018-010, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    14. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Targino, Rodrigo S. & Peters, Gareth W. & Shevchenko, Pavel V., 2015. "Sequential Monte Carlo Samplers for capital allocation under copula-dependent risk models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 206-226.
    16. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2024. "Corrected inference about the extreme Expected Shortfall in the general max-domain of attraction," TSE Working Papers 24-1565, Toulouse School of Economics (TSE), revised Dec 2024.
    17. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Beatriz de la Flor & Javier Ojea-Ferreiro & Eva Ferreira, 2022. "The Hedging Cost of Forgetting the Exchange Rate," Documentos de Trabajo del ICAE 2022-01, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    19. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Laurent Gardes & Stéphane Girard & Gilles Stupfler, 2020. "Beyond tail median and conditional tail expectation: Extreme risk estimation using tail Lp‐optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 922-949, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:171:y:2024:i:c:s030441492400036x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.