IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i4p1782-1815.html
   My bibliography  Save this article

Estimation of the conditional tail moment for Weibull‐type distributions

Author

Listed:
  • Yuri Goegebeur
  • Armelle Guillou
  • Jing Qin

Abstract

We consider the estimation of the conditional tail moment at extreme levels for the class of Weibull‐type distributions. A two‐step procedure is introduced where in the first stage one estimates the conditional tail moment at an intermediate level, followed by an extrapolation in the second stage. The asymptotic properties of the estimators introduced in the two stages are derived under suitable assumptions. The finite sample properties of the proposed estimator are examined with a simulation experiment. We conclude with two applications on real life data: wind speed measurements collected at an offshore wind farm and PM2.5 air pollution data.

Suggested Citation

  • Yuri Goegebeur & Armelle Guillou & Jing Qin, 2024. "Estimation of the conditional tail moment for Weibull‐type distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(4), pages 1782-1815, December.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:4:p:1782-1815
    DOI: 10.1111/sjos.12731
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12731
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Juan-Juan Cai & John H. J. Einmahl & Laurens Haan & Chen Zhou, 2015. "Estimation of the marginal expected shortfall: the mean when a related variable is extreme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 417-442, March.
    2. Esmat Jamshidi Eini & Hamid Khaloozadeh, 2021. "Tail conditional moment for generalized skew-elliptical distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(13-15), pages 2285-2305, November.
    3. Yuri Goegebeur & Armelle Guillou & Théo Rietsch, 2015. "Robust conditional Weibull-type estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 479-514, June.
    4. Einmahl, J.H.J. & de Haan, L.F.M. & Li, D., 2006. "Weighted approximations of tail copula processes with applications to testing the bivariate extreme value condition," Other publications TiSEM 18b65ac3-ba79-4bff-ad53-2, Tilburg University, School of Economics and Management.
    5. Jonathan El Methni & Laurent Gardes & Stéphane Girard, 2014. "Non-parametric Estimation of Extreme Risk Measures from Conditional Heavy-tailed Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 988-1012, December.
    6. Anthony C. Davison & Simone A. Padoan & Gilles Stupfler, 2023. "Tail Risk Inference via Expectiles in Heavy-Tailed Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 876-889, July.
    7. Goegebeur, Yuri & Guillou, Armelle & Pedersen, Tine & Qin, Jing, 2022. "Extreme-value based estimation of the conditional tail moment with application to reinsurance rating," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 102-122.
    8. Gomes, M. Ivette & Pestana, Dinis, 2007. "A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 280-292, March.
    9. Yuri Goegebeur & Armelle Guillou, 2011. "A weighted mean excess function approach to the estimation of Weibull-type tails," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 138-162, May.
    10. Linton, Oliver & Xiao, Zhijie, 2013. "Estimation Of And Inference About The Expected Shortfall For Time Series With Infinite Variance," Econometric Theory, Cambridge University Press, vol. 29(4), pages 771-807, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.
    2. Goegebeur, Yuri & Guillou, Armelle & Qin, Jing, 2024. "Dependent conditional tail expectation for extreme levels," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
    3. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    4. Bousebata, Meryem & Enjolras, Geoffroy & Girard, Stéphane, 2023. "Extreme partial least-squares," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    5. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    6. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
    7. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2023. "Nonparametric estimation of conditional marginal excess moments," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    8. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2023. "A Weissman-type estimator of the conditional marginal expected shortfall," Econometrics and Statistics, Elsevier, vol. 27(C), pages 173-196.
    9. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.
    10. Liu, Ruicheng & Pun, Chi Seng, 2022. "Machine-Learning-enhanced systemic risk measure: A Two-Step supervised learning approach," Journal of Banking & Finance, Elsevier, vol. 136(C).
    11. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    12. Claudia Klüppelberg & Gabriel Kuhn & Liang Peng, 2008. "Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 701-718, December.
    13. Chengping Gong & Chengxiu Ling, 2018. "Robust Estimations for the Tail Index of Weibull-Type Distribution," Risks, MDPI, vol. 6(4), pages 1-15, October.
    14. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    15. Moosup Kim & Sangyeol Lee, 2022. "Maximum composite likelihood estimation for spatial extremes models of Brown–Resnick type with application to precipitation data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1023-1059, September.
    16. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    17. Carsten Bormann & Julia Schaumburg & Melanie Schienle, 2016. "Beyond Dimension two: A Test for Higher-Order Tail Risk," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 552-580.
    18. Maarten R C van Oordt & Chen Zhou, 2019. "Estimating Systematic Risk under Extremely Adverse Market Conditions," Journal of Financial Econometrics, Oxford University Press, vol. 17(3), pages 432-461.
    19. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 151-162, June.
    20. Gardes, Laurent & Girard, Stéphane, 2016. "On the estimation of the functional Weibull tail-coefficient," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 29-45.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:4:p:1782-1815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.