IDEAS home Printed from https://ideas.repec.org/e/pzo26.html
   My authors  Follow this author

Guohua Zou

Personal Details

First Name:Guohua
Middle Name:
Last Name:Zou
Suffix:
RePEc Short-ID:pzo26
[This author has chosen not to make the email address public]
http://www.statsci.amss.ac.cn/GHZouPage/index.htm

Affiliation

中国科学院,数学与系统科学研究院 (Academy of Mathematics and Systems Science, Chinese Academy of Sciences)

http://www.amss.ac.cn
Beijing, China

Research output

as
Jump to: Articles

Articles

  1. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
  2. Wu, Xiaoyong & Zou, Guohua & Li, Yingfu, 2009. "Uniformly minimum variance nonnegative quadratic unbiased estimation in a generalized growth curve model," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 1061-1072, May.
  3. Qin, Huaizhen & Wan, Alan T.K. & Zou, Guohua, 2009. "On the sensitivity of the one-sided t test to covariance misspecification," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1593-1609, September.
  4. Zhang, Xinyu & Chen, Ti & Wan, Alan T.K. & Zou, Guohua, 2009. "Robustness of Stein-type estimators under a non-scalar error covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2376-2388, November.
  5. Liang, Hua & Zou, Guohua, 2008. "Improved AIC selection strategy for survival analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2538-2548, January.
  6. Jun Yang & Guohua Zou & Yu Zhao, 2008. "Two noniterative algorithms for computing posteriors," Computational Statistics, Springer, vol. 23(3), pages 443-453, July.
  7. Hua Liang & Hulin Wu & Guohua Zou, 2008. "A note on conditional aic for linear mixed-effects models," Biometrika, Biometrika Trust, vol. 95(3), pages 773-778.
  8. Liang, Hua & Su, Haiyan & Zou, Guohua, 2008. "Confidence intervals for a common mean with missing data with applications in an AIDS study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 546-553, December.
  9. Wan, Alan T.K. & Zou, Guohua & Banerjee, Anurag, 2007. "The power of autocorrelation tests near the unit root in models with possibly mis-specified linear restrictions," Economics Letters, Elsevier, vol. 94(2), pages 213-219, February.
  10. Alan T.K. Wan & Guohua Zou & Huaizhen Qin, 2007. "On the sensitivity of the restricted least squares estimators to covariance misspecification," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 471-487, November.
  11. Zou, Guohua & Wan, Alan T.K. & Wu, Xiaoyong & Chen, Ti, 2007. "Estimation of regression coefficients of interest when other regression coefficients are of no interest: The case of non-normal errors," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 803-810, April.
  12. Wu, Xiaoyong & Zou, Guohua & Chen, Jianwei, 2006. "Unbiased invariant minimum norm estimation in generalized growth curve model," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1718-1741, September.
  13. Alan T.K. Wan & Guohua Zou & Kazuhiro Ohtani, 2006. "Further results on optimal critical values of pre-test when estimating the regression error variance," Econometrics Journal, Royal Economic Society, vol. 9(1), pages 159-176, March.
  14. Wan, Alan T. K. & Zou, Guohua, 2003. "Optimal critical values of pre-tests when estimating the regression error variance: analytical findings under a general loss structure," Journal of Econometrics, Elsevier, vol. 114(1), pages 165-196, May.
  15. Alan Wan & Anoop Chaturvedi & Guohuazou Zou, 2003. "Unbiased estimation of the MSE matrices of improved estimators in linear regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(2), pages 173-189.
  16. Wan, Alan T. K. & Zou, Guohua & Lee, Andy H., 2000. "Minimax and [Gamma]-minimax estimation for the Poisson distribution under LINEX loss when the parameter space is restricted," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 23-32, October.
  17. Guohua Zou & Alan Wan, 2000. "Simultaneous Estimation of Several Stratum Means under Error-in-Variables Superpopulation Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 380-396, June.
  18. Zou, Guohua & Liang, Hua, 1997. "Admissibility of the usual estimators under error-in-variables superpopulation model," Statistics & Probability Letters, Elsevier, vol. 32(3), pages 301-309, March.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.

    Cited by:

    1. Steven Lehrer & Tian Xie, 2020. "The Bigger Picture: Combining Econometrics with Analytics Improve Forecasts of Movie Success," Working Paper 1449, Economics Department, Queen's University.
    2. Guozhi Hu & Weihu Cheng & Jie Zeng, 2023. "Optimal Model Averaging for Semiparametric Partially Linear Models with Censored Data," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    3. Wan, Alan T.K. & Zhang, Xinyu & Wang, Shouyang, 2014. "Frequentist model averaging for multinomial and ordered logit models," International Journal of Forecasting, Elsevier, vol. 30(1), pages 118-128.
    4. Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP46/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    6. Lastauskas, Povilas & Stakėnas, Julius, 2024. "Labor market policies in high- and low-interest rate environments: Evidence from the euro area," Economic Modelling, Elsevier, vol. 141(C).
    7. Jingwen Tu & Hu Yang & Chaohui Guo & Jing Lv, 2021. "Model averaging marginal regression for high dimensional conditional quantile prediction," Statistical Papers, Springer, vol. 62(6), pages 2661-2689, December.
    8. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    9. Shi, Pengfei & Zhang, Xinyu & Zhong, Wei, 2024. "Estimating conditional average treatment effects with heteroscedasticity by model averaging and matching," Economics Letters, Elsevier, vol. 238(C).
    10. Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    11. Xie, Tian, 2015. "Prediction model averaging estimator," Economics Letters, Elsevier, vol. 131(C), pages 5-8.
    12. Steven Lehrer & Tian Xie, 2016. "Box Office Buzz: Does Social Media Data Steal the Show from Model Uncertainty When Forecasting for Hollywood?," NBER Working Papers 22959, National Bureau of Economic Research, Inc.
    13. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    14. Hui Xiao & Yiguo Sun, 2019. "On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study," JRFM, MDPI, vol. 12(3), pages 1-16, June.
    15. Liu, Qingfeng, 2010. "Generalized Cp Model Averaging for Heteroskedastic Models," ビジネス創造センターディスカッション・ペーパー (Discussion papers of the Center for Business Creation) 10252/4334, Otaru University of Commerce.
    16. Povilas Lastauskas & Julius Stakénas, 2019. "Does It Matter When Labor Market Reforms Are Implemented? The Role of the Monetary Policy Environment," CESifo Working Paper Series 7844, CESifo.
    17. Yongmiao Hong & Tae-Hwy Lee & Yuying Sun & Shouyang Wang & Xinyu Zhang, 2017. "Time-varying Model Averaging," Working Papers 202001, University of California at Riverside, Department of Economics.
    18. Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric Model Averaging of Ultra-High Dimensional Time Series," Discussion Papers 15/18, Department of Economics, University of York.
    19. Xianwen Sun & Lixin Zhang, 2024. "Jackknife model averaging for mixed-data kernel-weighted spline quantile regressions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(7), pages 805-842, October.
    20. Aman Ullah & Alan T. K. Wan & Huansha Wang & Xinyu Zhang & Guohua Zou, 2017. "A semiparametric generalized ridge estimator and link with model averaging," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 370-384, March.
    21. Zhao, Shangwei & Xie, Tian & Ai, Xin & Yang, Guangren & Zhang, Xinyu, 2023. "Correcting sample selection bias with model averaging for consumer demand forecasting," Economic Modelling, Elsevier, vol. 123(C).
    22. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    23. Ryan Greenaway-McGrevy & Kade Sorensen, 2021. "A spatial model averaging approach to measuring house prices," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-32, December.
    24. Aman Ullah & Huansha Wang, 2013. "Parametric and Nonparametric Frequentist Model Selection and Model Averaging," Econometrics, MDPI, vol. 1(2), pages 1-23, September.
    25. Zhao, Shangwei & Zhang, Xinyu & Gao, Yichen, 2016. "Model averaging with averaging covariance matrix," Economics Letters, Elsevier, vol. 145(C), pages 214-217.
    26. Qingfeng Liu & Ryo Okui & Arihiro Yoshimura, 2013. "Generalized Least Squares Model Averaging," KIER Working Papers 855, Kyoto University, Institute of Economic Research.
    27. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    28. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    29. Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 61/13, Institute for Fiscal Studies.
    30. Michael Schomaker & Christian Heumann, 2020. "When and when not to use optimal model averaging," Statistical Papers, Springer, vol. 61(5), pages 2221-2240, October.
    31. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    32. Xinyu Zhang & Dalei Yu & Guohua Zou & Hua Liang, 2016. "Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1775-1790, October.
    33. Jialiang Li & Tonghui Yu & Jing Lv & Mei‐Ling Ting Lee, 2021. "Semiparametric model averaging prediction for lifetime data via hazards regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1187-1209, November.
    34. Wang, Weiwei & Zhang, Qi & Zhang, Xinyu & Li, Xinmin, 2021. "Model averaging based on generalized method of moments," Economics Letters, Elsevier, vol. 200(C).
    35. Yin-Wong Cheung & Wenhao Wang, 2019. "A Jackknife Model Averaging Analysis of RMB Misalignment Estimates," CESifo Working Paper Series 7840, CESifo.
    36. Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023. "Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.
    37. Kenichiro McAlinn & Kosaku Takanashi, 2019. "Mean-shift least squares model averaging," Papers 1912.01194, arXiv.org.
    38. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
    39. Luca Margaritella & Joakim Westerlund, 2023. "Using information criteria to select averages in CCE," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 405-421.
    40. Ren, Yu & Liang, Xuanxuan & Wang, Qin, 2021. "Short-term exchange rate forecasting: A panel combination approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    41. Cheng, Tzu-Chang F. & Ing, Ching-Kang & Yu, Shu-Hui, 2015. "Toward optimal model averaging in regression models with time series errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 321-334.
    42. Liao, Jun & Wan, Alan T.K. & He, Shuyuan & Zou, Guohua, 2022. "Optimal model averaging for multivariate regression models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    43. Chen, Xingyi & Li, Haiqi & Zhang, Jing, 2023. "Complete subset averaging approach for high-dimensional generalized linear models," Economics Letters, Elsevier, vol. 226(C).
    44. Shangwei Zhao, 2014. "Model averaging based on James–Stein estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 1013-1022, November.
    45. Qiu, Yue & Wang, Zongrun & Xie, Tian & Zhang, Xinyu, 2021. "Forecasting Bitcoin realized volatility by exploiting measurement error under model uncertainty," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 179-201.
    46. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    47. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    48. Tian Xie, 2019. "Forecast Bitcoin Volatility with Least Squares Model Averaging," Econometrics, MDPI, vol. 7(3), pages 1-20, September.
    49. Yuan, Chaoxia & Fang, Fang & Ni, Lyu, 2022. "Mallows model averaging with effective model size in fragmentary data prediction," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    50. Yan Gao & Xinyu Zhang & Shouyang Wang & Terence Tai-leung Chong & Guohua Zou, 2019. "Frequentist model averaging for threshold models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 275-306, April.
    51. Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2016. "Focused Information Criterion and Model Averaging for Large Panels with a Multifactor Error Structure," IEAS Working Paper : academic research 16-A016, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    52. De Bin, Riccardo & Boulesteix, Anne-Laure & Sauerbrei, Willi, 2017. "Detection of influential points as a byproduct of resampling-based variable selection procedures," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 19-31.
    53. Wei, Yuting & Wang, Qihua, 2021. "Cross-validation-based model averaging in linear models with response missing at random," Statistics & Probability Letters, Elsevier, vol. 171(C).
    54. Hongwei Zhang & Qiang He & Ben Jacobsen & Fuwei Jiang, 2020. "Forecasting stock returns with model uncertainty and parameter instability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 629-644, August.
    55. Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
    56. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
    57. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.
    58. Chu-An Liu & Biing-Shen Kuo & Wen-Jen Tsay, 2017. "Autoregressive Spectral Averaging Estimator," IEAS Working Paper : academic research 17-A013, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    59. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
    60. Michael Schomaker, 2012. "Shrinkage averaging estimation," Statistical Papers, Springer, vol. 53(4), pages 1015-1034, November.
    61. Shangwei Zhao & Jun Liao & Dalei Yu, 2020. "Model averaging estimator in ridge regression and its large sample properties," Statistical Papers, Springer, vol. 61(4), pages 1719-1739, August.
    62. Liao, Jun & Zou, Guohua & Gao, Yan & Zhang, Xinyu, 2021. "Model averaging prediction for time series models with a diverging number of parameters," Journal of Econometrics, Elsevier, vol. 223(1), pages 190-221.
    63. Liu, Chu-An, 2012. "A plug-in averaging estimator for regressions with heteroskedastic errors," MPRA Paper 41414, University Library of Munich, Germany.
    64. Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
    65. Tao Huang & Jialiang Li, 2018. "Semiparametric model average prediction in panel data analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 125-144, January.
    66. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    67. Zhang, Xinyu & Lu, Zudi & Zou, Guohua, 2013. "Adaptively combined forecasting for discrete response time series," Journal of Econometrics, Elsevier, vol. 176(1), pages 80-91.
    68. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    69. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
    70. Tian Xie, 2012. "Least Squares Model Averaging By Prediction Criterion," Working Paper 1299, Economics Department, Queen's University.
    71. Liao, Jun & Zong, Xianpeng & Zhang, Xinyu & Zou, Guohua, 2019. "Model averaging based on leave-subject-out cross-validation for vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(1), pages 35-60.
    72. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
    73. Gao, Yichen & Long, Wei & Wang, Zhengwei, 2015. "Estimating average treatment effect by model averaging," Economics Letters, Elsevier, vol. 135(C), pages 42-45.
    74. Barry L. Nelson & Alan T. K. Wan & Guohua Zou & Xinyu Zhang & Xi Jiang, 2021. "Reducing Simulation Input-Model Risk via Input Model Averaging," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 672-684, May.
    75. Peng, Jingfu & Yang, Yuhong, 2022. "On improvability of model selection by model averaging," Journal of Econometrics, Elsevier, vol. 229(2), pages 246-262.
    76. Qingfeng Liu & Andrey L. Vasnev, 2019. "A Combination Method for Averaging OLS and GLS Estimators," Econometrics, MDPI, vol. 7(3), pages 1-12, September.
    77. Jie Zeng & Weihu Cheng & Guozhi Hu, 2023. "Optimal Model Averaging Estimation for the Varying-Coefficient Partially Linear Models with Missing Responses," Mathematics, MDPI, vol. 11(8), pages 1-21, April.
    78. Wenchao Xu & Xinyu Zhang, 2024. "On Asymptotic Optimality of Least Squares Model Averaging When True Model Is Included," Papers 2411.09258, arXiv.org.
    79. Liu, Chu-An, 2013. "Distribution Theory of the Least Squares Averaging Estimator," MPRA Paper 54201, University Library of Munich, Germany.
    80. Xu Cheng & Zhipeng Liao & Ruoyao Shi, 2013. "Uniform Asymptotic Risk of Averaging GMM Estimator Robust to Misspecification, Second Version," PIER Working Paper Archive 15-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Mar 2015.
    81. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Discussion Paper 2012-043, Tilburg University, Center for Economic Research.
    82. Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
    83. Schomaker, Michael & Heumann, Christian, 2014. "Model selection and model averaging after multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 758-770.
    84. Yang Feng & Qingfeng Liu, 2020. "Nested Model Averaging on Solution Path for High-dimensional Linear Regression," Papers 2005.08057, arXiv.org.
    85. Xiaochao Xia, 2021. "Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing," Statistical Papers, Springer, vol. 62(6), pages 2885-2905, December.
    86. Baihua He & Yanyan Liu & Guosheng Yin & Yuanshan Wu, 2023. "Model aggregation for doubly divided data with large size and large dimension," Computational Statistics, Springer, vol. 38(1), pages 509-529, March.
    87. Longbiao Liao & Jinghao Liu, 2024. "Model Averaging for Accelerated Failure Time Models with Missing Censoring Indicators," Mathematics, MDPI, vol. 12(5), pages 1-16, February.
    88. Christian Brownlees & Vladislav Morozov, 2022. "Unit Averaging for Heterogeneous Panels," Papers 2210.14205, arXiv.org, revised May 2024.
    89. Xie, Tian, 2017. "Heteroscedasticity-robust model screening: A useful toolkit for model averaging in big data analytics," Economics Letters, Elsevier, vol. 151(C), pages 119-122.
    90. Edvard Bakhitov, 2020. "Frequentist Shrinkage under Inequality Constraints," Papers 2001.10586, arXiv.org.
    91. Zhang, Xinyu, 2013. "Model averaging with covariates that are missing completely at random," Economics Letters, Elsevier, vol. 121(3), pages 360-363.
    92. Dong, Qingkai & Liu, Binxia & Zhao, Hui, 2023. "Weighted least squares model averaging for accelerated failure time models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    93. Alena Skolkova, 2023. "Model Averaging with Ridge Regularization," CERGE-EI Working Papers wp758, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    94. Tsay, Wen-Jen, 2021. "Estimating cartel damages with model averaging approaches," International Review of Law and Economics, Elsevier, vol. 68(C).
    95. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Other publications TiSEM 7715e942-b446-4985-8216-f, Tilburg University, School of Economics and Management.

  2. Qin, Huaizhen & Wan, Alan T.K. & Zou, Guohua, 2009. "On the sensitivity of the one-sided t test to covariance misspecification," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1593-1609, September.

    Cited by:

    1. Magnus, Jan R. & Vasnev, Andrey L., 2015. "Interpretation and use of sensitivity in econometrics, illustrated with forecast combinations," International Journal of Forecasting, Elsevier, vol. 31(3), pages 769-781.

  3. Liang, Hua & Zou, Guohua, 2008. "Improved AIC selection strategy for survival analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2538-2548, January.

    Cited by:

    1. Fábio Bayer & Francisco Cribari-Neto, 2015. "Bootstrap-based model selection criteria for beta regressions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 776-795, December.
    2. Majda Talamakrouni & Anouar El Ghouch & Ingrid Van Keilegom, 2015. "Guided Censored Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 214-233, March.
    3. Dirick, Lore & Claeskens, Gerda & Baesens, Bart, 2015. "An Akaike information criterion for multiple event mixture cure models," European Journal of Operational Research, Elsevier, vol. 241(2), pages 449-457.
    4. Talamakrouni, Majda & El Ghouch, Anouar & Van Keilegom, Ingrid, 2012. "Guided censored regression," LIDAM Discussion Papers ISBA 2012023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Pérot, Nadia & Bousquet, Nicolas, 2017. "Functional Weibull-based models of steel fracture toughness for structural risk analysis: estimation and selection," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 355-367.

  4. Hua Liang & Hulin Wu & Guohua Zou, 2008. "A note on conditional aic for linear mixed-effects models," Biometrika, Biometrika Trust, vol. 95(3), pages 773-778.

    Cited by:

    1. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    2. Yuki Kawakubo & Shonosuke Sugasawa & Tatsuya Kubokawa, 2014. "Conditional AIC under Covariate Shift with Application to Small Area Prediction," CIRJE F-Series CIRJE-F-944, CIRJE, Faculty of Economics, University of Tokyo.
    3. Yu, Dalei & Zhang, Xinyu & Yau, Kelvin K.W., 2013. "Information based model selection criteria for generalized linear mixed models with unknown variance component parameters," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 245-262.
    4. Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
    5. Overholser, Rosanna & Xu, Ronghui, 2014. "Effective degrees of freedom and its application to conditional AIC for linear mixed-effects models with correlated error structures," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 160-170.
    6. Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
    7. Yunquan Song & Minmin Zhan & Yue Zhang & Yongxin Liu, 2024. "Huber Loss Meets Spatial Autoregressive Model: A Robust Variable Selection Method with Prior Information," Networks and Spatial Economics, Springer, vol. 24(1), pages 291-311, March.
    8. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    9. Kruse, René-Marcel & Silbersdorff, Alexander & Säfken, Benjamin, 2022. "Model averaging for linear mixed models via augmented Lagrangian," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    10. Kubokawa, Tatsuya, 2011. "Conditional and unconditional methods for selecting variables in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 641-660, March.
    11. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    12. Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
    13. Cantoni, Eva & Jacot, Nadège & Ghisletta, Paolo, 2024. "Review and comparison of measures of explained variation and model selection in linear mixed-effects models," Econometrics and Statistics, Elsevier, vol. 29(C), pages 150-168.
    14. Benjamin Säfken & Thomas Kneib, 2020. "Conditional covariance penalties for mixed models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 990-1010, September.
    15. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    16. Mojtaba Ganjali & Taban Baghfalaki, 2018. "Application of Penalized Mixed Model in Identification of Genes in Yeast Cell-Cycle Gene Expression Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(2), pages 38-41, April.
    17. Dimova, Rositsa B. & Markatou, Marianthi & Talal, Andrew H., 2011. "Information methods for model selection in linear mixed effects models with application to HCV data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2677-2697, September.
    18. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    19. Philipp F. M. Baumann & Enzo Rossi & Alexander Volkmann, 2020. "What Drives Inflation and How: Evidence from Additive Mixed Models Selected by cAIC," Papers 2006.06274, arXiv.org, revised Aug 2022.

  5. Liang, Hua & Su, Haiyan & Zou, Guohua, 2008. "Confidence intervals for a common mean with missing data with applications in an AIDS study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 546-553, December.

    Cited by:

    1. Bindele, Huybrechts F. & Abebe, Ash, 2015. "Semi-parametric rank regression with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 117-132.

  6. Alan T.K. Wan & Guohua Zou & Huaizhen Qin, 2007. "On the sensitivity of the restricted least squares estimators to covariance misspecification," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 471-487, November.

    Cited by:

    1. Magnus, Jan R. & Vasnev, Andrey L., 2015. "Interpretation and use of sensitivity in econometrics, illustrated with forecast combinations," International Journal of Forecasting, Elsevier, vol. 31(3), pages 769-781.
    2. Qin, Huaizhen & Wan, Alan T.K. & Zou, Guohua, 2009. "On the sensitivity of the one-sided t test to covariance misspecification," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1593-1609, September.
    3. Zhang, Xinyu & Chen, Ti & Wan, Alan T.K. & Zou, Guohua, 2009. "Robustness of Stein-type estimators under a non-scalar error covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2376-2388, November.

  7. Zou, Guohua & Wan, Alan T.K. & Wu, Xiaoyong & Chen, Ti, 2007. "Estimation of regression coefficients of interest when other regression coefficients are of no interest: The case of non-normal errors," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 803-810, April.

    Cited by:

    1. Clarke, Judith A., 2008. "On weighted estimation in linear regression in the presence of parameter uncertainty," Economics Letters, Elsevier, vol. 100(1), pages 1-3, July.
    2. Giuseppe de Luca & Jan Magnus & Franco Peracchi, 2017. "Weighted-Average Least Squares Estimation of Generalized Linear Models," Tinbergen Institute Discussion Papers 17-029/III, Tinbergen Institute.
    3. An, Lihua & Nkurunziza, Sévérien & Fung, Karen Y. & Krewski, Daniel & Luginaah, Isaac, 2009. "Shrinkage estimation in general linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2537-2549, May.
    4. Judith Anne Clarke, 2017. "Model Averaging OLS and 2SLS: An Application of the WALS Procedure," Econometrics Working Papers 1701, Department of Economics, University of Victoria.

  8. Wu, Xiaoyong & Zou, Guohua & Chen, Jianwei, 2006. "Unbiased invariant minimum norm estimation in generalized growth curve model," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1718-1741, September.

    Cited by:

    1. Wu, Xiaoyong & Zou, Guohua & Li, Yingfu, 2009. "Uniformly minimum variance nonnegative quadratic unbiased estimation in a generalized growth curve model," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 1061-1072, May.

  9. Alan T.K. Wan & Guohua Zou & Kazuhiro Ohtani, 2006. "Further results on optimal critical values of pre-test when estimating the regression error variance," Econometrics Journal, Royal Economic Society, vol. 9(1), pages 159-176, March.

    Cited by:

    1. Zhu, Rong & Zhou, Sherry Z.F., 2011. "Estimating the error variance after a pre-test for an interval restriction on the coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2312-2323, July.
    2. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    3. Davy Paindaveine & Joséa Rasoafaraniaina & Thomas Verdebout, 2021. "Preliminary test estimation in uniformly locally asymptotically normal models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 689-707, June.

  10. Wan, Alan T. K. & Zou, Guohua, 2003. "Optimal critical values of pre-tests when estimating the regression error variance: analytical findings under a general loss structure," Journal of Econometrics, Elsevier, vol. 114(1), pages 165-196, May.

    Cited by:

    1. Wang, W., 2013. "Essays on model averaging and political economics," Other publications TiSEM 2e45376b-749e-4464-aba7-f, Tilburg University, School of Economics and Management.
    2. Jan R. Magnus & Wendun Wang & Xinyu Zhang, 2016. "Weighted-Average Least Squares Prediction," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1040-1074, June.
    3. Zhu, Rong & Zhou, Sherry Z.F., 2011. "Estimating the error variance after a pre-test for an interval restriction on the coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2312-2323, July.
    4. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    5. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Discussion Paper 2012-043, Tilburg University, Center for Economic Research.
    6. Helen X. H. Bao & Alan T. K. Wan, 2007. "Improved Estimators of Hedonic Housing Price Models," Journal of Real Estate Research, American Real Estate Society, vol. 29(3), pages 267-302.
    7. Magnus, J.R. & Wang, W. & Zhang, Xinyu, 2012. "WALS Prediction," Other publications TiSEM 7715e942-b446-4985-8216-f, Tilburg University, School of Economics and Management.

  11. Alan Wan & Anoop Chaturvedi & Guohuazou Zou, 2003. "Unbiased estimation of the MSE matrices of improved estimators in linear regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(2), pages 173-189.

    Cited by:

    1. Boot, Tom, 2023. "Joint inference based on Stein-type averaging estimators in the linear regression model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1542-1563.
    2. Zhang, Xinyu & Chen, Ti & Wan, Alan T.K. & Zou, Guohua, 2009. "Robustness of Stein-type estimators under a non-scalar error covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2376-2388, November.
    3. Helen X. H. Bao & Alan T. K. Wan, 2007. "Improved Estimators of Hedonic Housing Price Models," Journal of Real Estate Research, American Real Estate Society, vol. 29(3), pages 267-302.
    4. Chaturvedi, Anoop & Gupta, Suchita & Bhatti, M. Ishaq, 2012. "Confidence ellipsoids based on a general family of shrinkage estimators for a linear model with non-spherical disturbances," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 140-158, February.
    5. Ahmed, S. Ejaz & Nicol, Christopher J., 2012. "An application of shrinkage estimation to the nonlinear regression model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3309-3321.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Guohua Zou should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.