IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i2p546-553.html
   My bibliography  Save this article

Confidence intervals for a common mean with missing data with applications in an AIDS study

Author

Listed:
  • Liang, Hua
  • Su, Haiyan
  • Zou, Guohua

Abstract

In practical data analysis, nonresponse phenomenon frequently occurs. In this paper, we propose an empirical likelihood based confidence interval for a common mean by combining the imputed data, assuming that data are missing completely at random. Simulation studies show that such confidence intervals perform well, even when the missing proportion is high. Our method is applied to an analysis of a real data set from an AIDS clinic trial study.

Suggested Citation

  • Liang, Hua & Su, Haiyan & Zou, Guohua, 2008. "Confidence intervals for a common mean with missing data with applications in an AIDS study," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 546-553, December.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:546-553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00455-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    2. Chen, S. X., 1994. "Empirical Likelihood Confidence Intervals for Linear Regression Coefficients," Journal of Multivariate Analysis, Elsevier, vol. 49(1), pages 24-40, April.
    3. Qihua Wang & J. N. K. Rao, 2002. "Empirical Likelihood‐based Inference in Linear Models with Missing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 563-576, September.
    4. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    5. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz, 1999. "Monte Carlo EM for Missing Covariates in Parametric Regression Models," Biometrics, The International Biometric Society, vol. 55(2), pages 591-596, June.
    6. Song Chen, 1993. "On the accuracy of empirical likelihood confidence regions for linear regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(4), pages 621-637, December.
    7. Lang Wu, 2004. "Exact and Approximate Inferences for Nonlinear Mixed-Effects Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 700-709, January.
    8. Qihua Wang, 2002. "Empirical likelihood-based inference in linear errors-in-covariables models with validation data," Biometrika, Biometrika Trust, vol. 89(2), pages 345-358, June.
    9. Joseph G. Ibrahim & Stuart R. Lipsitz & Nick Horton, 2001. "Using auxiliary data for parameter estimation with non‐ignorably missing outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 361-373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bindele, Huybrechts F. & Abebe, Ash, 2015. "Semi-parametric rank regression with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 117-132.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yichuan & Chen, Feiming, 2008. "Empirical likelihood inference for censored median regression model via nonparametric kernel estimation," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 215-231, February.
    2. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    3. Liang, Hua, 2008. "Generalized partially linear models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 880-895, May.
    4. Chen, Xia & Cui, Hengjian, 2008. "Empirical likelihood inference for partial linear models under martingale difference sequence," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2895-2901, December.
    5. Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Xue, Liu-Gen & Zhu, Lixing, 2006. "Empirical likelihood for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1295-1312, July.
    7. Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Qin, Yongsong & Li, Ling & Lei, Qingzhu, 2009. "Empirical likelihood for linear regression models with missing responses," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1391-1396, June.
    9. Yongcheng Qi, 2010. "On the tail index of a heavy tailed distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 277-298, April.
    10. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    11. Zhao, Hui & Zhao, Pu-Ying & Tang, Nian-Sheng, 2013. "Empirical likelihood inference for mean functionals with nonignorably missing response data," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 101-116.
    12. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    13. Francesco Bravo, "undated". "Empirical likelihood specification testing in linear regression models," Discussion Papers 00/28, Department of Economics, University of York.
    14. Wang, Qihua & Lai, Peng, 2011. "Empirical likelihood calibration estimation for the median treatment difference in observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1596-1609, April.
    15. Bruce Brown & Song Chen, 1998. "Combined and Least Squares Empirical Likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 697-714, December.
    16. Wang, Qihua & Tong, Xingwei & Sun, Liuquan, 2012. "Exploring the varying covariate effects in proportional odds models with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 168-189.
    17. Xuemei Hu & Xiaohui Liu, 2013. "Empirical likelihood confidence regions for semi-varying coefficient models with linear process errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 161-180, March.
    18. Wolfgang Härdle & Oliver Linton & Wang & Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers 11/03, Institute for Fiscal Studies.
    19. Wang, Qihua & Yu, Keming, 2007. "Likelihood-based kernel estimation in semiparametric errors-in-covariables models with validation data," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 455-480, March.
    20. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2013. "Testing the linear errors-in-variables model with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 875-884.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:546-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.