IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v104y2020i4d10.1007_s10182-019-00359-z.html
   My bibliography  Save this article

Model selection in linear mixed-effect models

Author

Listed:
  • Simona Buscemi

    (University of Palermo)

  • Antonella Plaia

    (University of Palermo)

Abstract

Linear mixed-effects models are a class of models widely used for analyzing different types of data: longitudinal, clustered and panel data. Many fields, in which a statistical methodology is required, involve the employment of linear mixed models, such as biology, chemistry, medicine, finance and so forth. One of the most important processes, in a statistical analysis, is given by model selection. Hence, since there are a large number of linear mixed model selection procedures available in the literature, a pressing issue is how to identify the best approach to adopt in a specific case. We outline mainly all approaches focusing on the part of the model subject to selection (fixed and/or random), the dimensionality of models and the structure of variance and covariance matrices, and also, wherever possible, the existence of an implemented application of the methodologies set out.

Suggested Citation

  • Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
  • Handle: RePEc:spr:alstar:v:104:y:2020:i:4:d:10.1007_s10182-019-00359-z
    DOI: 10.1007/s10182-019-00359-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-019-00359-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-019-00359-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Yali Fan & Guoyou Qin & Zhong Yi Zhu, 2014. "Robust Variable Selection in Linear Mixed Models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(21), pages 4566-4581, November.
    3. Francisco M. M. Rocha & Julio M. Singer, 2018. "Selection of terms in random coefficient regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(2), pages 225-242, January.
    4. Yuki Kawakubo & Shonosuke Sugasawa & Tatsuya Kubokawa, 2014. "Conditional AIC under Covariate Shift with Application to Small Area Prediction," CIRJE F-Series CIRJE-F-944, CIRJE, Faculty of Economics, University of Tokyo.
    5. Marhuenda, Yolanda & Molina, Isabel & Morales, Domingo, 2013. "Small area estimation with spatio-temporal Fay–Herriot models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 308-325.
    6. Francis K. C. Hui & Samuel Müller & A. H. Welsh, 2017. "Joint Selection in Mixed Models using Regularized PQL," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1323-1333, July.
    7. Shang, Junfeng & Cavanaugh, Joseph E., 2008. "Bootstrap variants of the Akaike information criterion for mixed model selection," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2004-2021, January.
    8. Srivastava, Muni S. & Kubokawa, Tatsuya, 2010. "Conditional information criteria for selecting variables in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1970-1980, October.
    9. María José Lombardía & Esther López‐Vizcaíno & Cristina Rueda, 2017. "Mixed generalized Akaike information criterion for small area models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1229-1252, October.
    10. Julio M. Singer & Francisco M.M. Rocha & Juvêncio S. Nobre, 2017. "Graphical Tools for Detecting Departures from Linear Mixed Model Assumptions and Some Remedial Measures," International Statistical Review, International Statistical Institute, vol. 85(2), pages 290-324, August.
    11. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    12. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    13. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    14. Chen, Fei & Li, Zaixing & Shi, Lei & Zhu, Lixing, 2015. "Inference for mixed models of ANOVA type with high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 382-401.
    15. Shakhawat Hossain & Trevor Thomson & Ejaz Ahmed, 2018. "Shrinkage estimation in linear mixed models for longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 569-586, July.
    16. Rohart, Florian & San Cristobal, Magali & Laurent, Béatrice, 2014. "Selection of fixed effects in high dimensional linear mixed models using a multicycle ECM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 209-222.
    17. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    18. Zhen Chen & David B. Dunson, 2003. "Random Effects Selection in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 59(4), pages 762-769, December.
    19. Cheng Wenren & Junfeng Shang, 2016. "Conditional conceptual predictive statistic for mixed model selection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 585-603, March.
    20. Julia Braun & Leonhard Held & Bruno Ledergerber, 2012. "Predictive Cross-validation for the Choice of Linear Mixed-Effects Models with Application to Data from the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 68(1), pages 53-61, March.
    21. Jiang, Jiming & Nguyen, Thuan & Rao, J. Sunil, 2009. "A simplified adaptive fence procedure," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 625-629, March.
    22. Hua Liang & Hulin Wu & Guohua Zou, 2008. "A note on conditional aic for linear mixed-effects models," Biometrika, Biometrika Trust, vol. 95(3), pages 773-778.
    23. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    24. Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
    25. Pu, Wenji & Niu, Xu-Feng, 2006. "Selecting mixed-effects models based on a generalized information criterion," Journal of Multivariate Analysis, Elsevier, vol. 97(3), pages 733-758, March.
    26. Howard D. Bondell & Arun Krishna & Sujit K. Ghosh, 2010. "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models," Biometrics, The International Biometric Society, vol. 66(4), pages 1069-1077, December.
    27. Sonja Greven & Thomas Kneib, 2010. "On the behaviour of marginal and conditional AIC in linear mixed models," Biometrika, Biometrika Trust, vol. 97(4), pages 773-789.
    28. Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
    29. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    30. Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
    31. Dimova, Rositsa B. & Markatou, Marianthi & Talal, Andrew H., 2011. "Information methods for model selection in linear mixed effects models with application to HCV data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2677-2697, September.
    32. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    33. M. Revan Özkale & Funda Can, 2017. "An evaluation of ridge estimator in linear mixed models: an example from kidney failure data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2251-2269, September.
    34. Xinyu Zhang & Hua Liang & Anna Liu & David Ruppert & Guohua Zou, 2016. "Selection Strategy for Covariance Structure of Random Effects in Linear Mixed-effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 275-291, March.
    35. Kubokawa, Tatsuya, 2011. "Conditional and unconditional methods for selecting variables in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 641-660, March.
    36. Sorensen, G. & Barbeau, E. & Stoddard, A.M. & Hunt, M.K. & Kaphingst, K. & Wallace, L., 2005. "Promoting behavior change among working-class, multiethnic workers: Results of the healthy directions - Small business study," American Journal of Public Health, American Public Health Association, vol. 95(8), pages 1389-1395.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojtaba Ganjali & Taban Baghfalaki, 2018. "Application of Penalized Mixed Model in Identification of Genes in Yeast Cell-Cycle Gene Expression Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(2), pages 38-41, April.
    2. Cantoni, Eva & Jacot, Nadège & Ghisletta, Paolo, 2024. "Review and comparison of measures of explained variation and model selection in linear mixed-effects models," Econometrics and Statistics, Elsevier, vol. 29(C), pages 150-168.
    3. Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
    4. Jan Pablo Burgard & Joscha Krause & Ralf Münnich, 2019. "Penalized Small Area Models for the Combination of Unit- and Area-level Data," Research Papers in Economics 2019-05, University of Trier, Department of Economics.
    5. Howard D. Bondell & Arun Krishna & Sujit K. Ghosh, 2010. "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models," Biometrics, The International Biometric Society, vol. 66(4), pages 1069-1077, December.
    6. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    7. Yu, Dalei & Zhang, Xinyu & Yau, Kelvin K.W., 2013. "Information based model selection criteria for generalized linear mixed models with unknown variance component parameters," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 245-262.
    8. Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
    9. Shakhawat Hossain & Trevor Thomson & Ejaz Ahmed, 2018. "Shrinkage estimation in linear mixed models for longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 569-586, July.
    10. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    11. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    12. Blommaert, A. & Hens, N. & Beutels, Ph., 2014. "Data mining for longitudinal data under multicollinearity and time dependence using penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 667-680.
    13. Zhang, Yan-Qing & Tian, Guo-Liang & Tang, Nian-Sheng, 2016. "Latent variable selection in structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 190-205.
    14. Zangdong He & Wanzhu Tu & Sijian Wang & Haoda Fu & Zhangsheng Yu, 2015. "Simultaneous variable selection for joint models of longitudinal and survival outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 178-187, March.
    15. Yuki Kawakubo & Shonosuke Sugasawa & Tatsuya Kubokawa, 2014. "Conditional AIC under Covariate Shift with Application to Small Area Prediction," CIRJE F-Series CIRJE-F-944, CIRJE, Faculty of Economics, University of Tokyo.
    16. Rohart, Florian & San Cristobal, Magali & Laurent, Béatrice, 2014. "Selection of fixed effects in high dimensional linear mixed models using a multicycle ECM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 209-222.
    17. Hang Lai & Xin Gao, 2023. "Modified BIC Criterion for Model Selection in Linear Mixed Models," Mathematics, MDPI, vol. 11(9), pages 1-26, May.
    18. Kin Yau Wong & Yair Goldberg & Jason P. Fine, 2016. "Oracle estimation of parametric models under boundary constraints," Biometrics, The International Biometric Society, vol. 72(4), pages 1173-1183, December.
    19. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    20. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:104:y:2020:i:4:d:10.1007_s10182-019-00359-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.