IDEAS home Printed from https://ideas.repec.org/e/pzi54.html
   My authors  Follow this author

Christina Elisabeth Ziegler

Personal Details

First Name:Christina
Middle Name:Elisabeth
Last Name:Ziegler
Suffix:
RePEc Short-ID:pzi54
[This author has chosen not to make the email address public]

Research output

as
Jump to: Working papers Articles

Working papers

  1. Ziegler, Christina, 2012. "Monetary policy under alternative exchange rate regimes in Central and Eastern Europe," Working Papers 104, University of Leipzig, Faculty of Economics and Management Science.
  2. Carstensen, Kai & Wohlrabe, Klaus & Ziegler, Christina, 2010. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Discussion Papers in Economics 11442, University of Munich, Department of Economics.
  3. Christina Ziegler, 2009. "Testing Predicitive Ability of Business Cycle Indicators for the Euro Area," ifo Working Paper Series 69, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  4. Gunther Schnabl & Christina Ziegler, 2008. "Exchange Rate Regime and Wage Determination in Central and Eastern Europe," CESifo Working Paper Series 2471, CESifo.
  5. Ziegler, Christina & Eickmeier, Sandra, 2006. "How good are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Discussion Paper Series 1: Economic Studies 2006,42, Deutsche Bundesbank.

Articles

  1. Carstensen Kai & Wohlrabe Klaus & Ziegler Christina, 2011. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 82-106, February.
  2. Schnabl, Gunther & Ziegler, Christina, 2011. "Exchange rate and wage policies in Central and Eastern Europe," Journal of Policy Modeling, Elsevier, vol. 33(3), pages 347-360, May.
  3. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  4. Jonas Dovern & Christina Ziegler, 2008. "Predicting Growth Rates and Recessions. Assessing U.S. Leading Indicators under Real-Time Condition," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 54(4), pages 293-318.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Ziegler, Christina, 2012. "Monetary policy under alternative exchange rate regimes in Central and Eastern Europe," Working Papers 104, University of Leipzig, Faculty of Economics and Management Science.

    Cited by:

    1. Nikola Najman & Petr Rozmahel & Ludek Kouba & Ladislava Grochová, 2013. "Integration of Central and Eastern European Countries: Increasing EU Heterogeneity? WWWforEurope Working Paper No. 9," WIFO Studies, WIFO, number 46856.

  2. Carstensen, Kai & Wohlrabe, Klaus & Ziegler, Christina, 2010. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Discussion Papers in Economics 11442, University of Munich, Department of Economics.

    Cited by:

    1. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
    2. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65, May.
    3. Cyrille Lenoel & Garry Young, 2020. "Real-time turning point indicators: Review of current international practices," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-05, Economic Statistics Centre of Excellence (ESCoE).
    4. May Elsayyad & Kai A. Konrad, 2011. "Fighting Multiple Tax Havens," Working Papers fighting_multiple_tax_hav, Max Planck Institute for Tax Law and Public Finance.
    5. Yashkir, Olga & Yashkir, Yuriy, 2013. "Monitoring of Credit Risk through the Cycle: Risk Indicators," MPRA Paper 46402, University Library of Munich, Germany.
    6. Anna Sophia Ciesielski & Klaus Wohlrabe, 2011. "Sektorale Prognosen im Verarbeitenden Gewerbe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 64(22), pages 27-35, November.
    7. Patrick T. kanda & Mehmet Balcilar & Pejman Bahramian & Rangan Gupta, 2014. "Forecasting South African Inflation Using Non-Linear Models: A Weighted Loss-Based Evaluation," Working Papers 201416, University of Pretoria, Department of Economics.
    8. Christoph Schinke, 2016. "Wealth and Politics: Studies on Inter Vivos Transfers and Partisan Effects," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 67, May.
    9. Ha Quyen Ngo & Niklas Potrafke & Marina Riem & Christoph Schinke, 2015. "Ideology and Dissent among Economists: The Joint Economic Forecast of German Economic Research Institutes," CESifo Working Paper Series 5393, CESifo.
    10. Anna Billharz & Steffen Elstner & Marcus Jüppner, 2012. "Methoden der ifo Kurzfristprognose am Beispiel der Ausrüstungsinvestitionen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(21), pages 24-33, November.
    11. Brückbauer, Frank & Schröder, Michael, 2021. "Data resource profile: The ZEW FMS dataset," ZEW Discussion Papers 21-100, ZEW - Leibniz Centre for European Economic Research.
    12. Lehmann Robert & Wohlrabe Klaus, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
    13. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72.
    14. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    15. Duarte, Pablo & Süßmuth, Bernd, 2018. "Implementing an approximate dynamic factor model to nowcast GDP using sensitivity analysis," Working Papers 152, University of Leipzig, Faculty of Economics and Management Science.
    16. Rülke Jan-Christoph, 2012. "Do Private Sector Forecasters Desire to Deviate From the German Council of Economic Experts?," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(4), pages 414-428, August.
    17. Marina Riem, 2017. "Essays on the Behavior of Firms and Politicians," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 73, May.
    18. Jan-Christoph Rülke, 2011. "Do private sector forecasters desire to deviate from the German council of economic experts?," WHU Working Paper Series - Economics Group 11-04, WHU - Otto Beisheim School of Management.
    19. Katja Rietzler & Sabine Stephan, 2012. "Monthly recession predictions in real time: A density forecast approach for German industrial production," IMK Working Paper 94-2012, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.

  3. Christina Ziegler, 2009. "Testing Predicitive Ability of Business Cycle Indicators for the Euro Area," ifo Working Paper Series 69, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.

    Cited by:

    1. Yashkir, Olga & Yashkir, Yuriy, 2013. "Monitoring of Credit Risk through the Cycle: Risk Indicators," MPRA Paper 46402, University Library of Munich, Germany.

  4. Gunther Schnabl & Christina Ziegler, 2008. "Exchange Rate Regime and Wage Determination in Central and Eastern Europe," CESifo Working Paper Series 2471, CESifo.

    Cited by:

    1. Andreas Hoffmann, 2010. "An Overinvestment Cycle In Central And Eastern Europe?," Metroeconomica, Wiley Blackwell, vol. 61(4), pages 711-734, November.
    2. Ziegler, Christina, 2012. "Monetary policy under alternative exchange rate regimes in Central and Eastern Europe," Working Papers 104, University of Leipzig, Faculty of Economics and Management Science.

  5. Ziegler, Christina & Eickmeier, Sandra, 2006. "How good are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Discussion Paper Series 1: Economic Studies 2006,42, Deutsche Bundesbank.

    Cited by:

    1. El-Shagi, Makram, 2011. "Inflation expectations: Does the market beat econometric forecasts?," The North American Journal of Economics and Finance, Elsevier, vol. 22(3), pages 298-319.
    2. Michał Brzoza-Brzezina & Jacek Kotłowski, 2009. "Bezwzględna stopa inflacji w gospodarce polskiej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 9, pages 1-21.
    3. Eliana González & . Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model for the Colombian Inflation," Borradores de Economia 549, Banco de la Republica de Colombia.
    4. Marcellino, Massimiliano & Kapetanios, George & Carriero, Andrea, 2009. "Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models," CEPR Discussion Papers 7446, C.E.P.R. Discussion Papers.
    5. Claudia Godbout & Marco J. Lombardi, 2012. "Short-Term Forecasting of the Japanese Economy Using Factor Models," Staff Working Papers 12-7, Bank of Canada.
    6. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36, May.
    7. Lasha Kavtaradze & Manouchehr Mokhtari, 2018. "Factor Models And Time†Varying Parameter Framework For Forecasting Exchange Rates And Inflation: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 302-334, April.
    8. Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
    9. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2007. "Forecasting Large Datasets with Reduced Rank Multivariate Models," Working Papers 617, Queen Mary University of London, School of Economics and Finance.
    10. Michal Brzoza-Brzezina & Jacek Kotlowski, 2009. "Estimating pure inflation in the Polish economy," Working Papers 37, Department of Applied Econometrics, Warsaw School of Economics.
    11. Eliana González, 2011. "Forecasting With Many Predictors. An Empirical Comparison," Borradores de Economia 643, Banco de la Republica de Colombia.
    12. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    13. William T. Gavin & Kevin L. Kliesen, 2006. "Forecasting inflation and output: comparing data-rich models with simple rules," Working Papers 2006-054, Federal Reserve Bank of St. Louis.
    14. James H. Stock & Mark W. Watson, 2008. "Phillips Curve Inflation Forecasts," NBER Working Papers 14322, National Bureau of Economic Research, Inc.
    15. Yin-Wong Cheung & Matthew S. Yiu & Kenneth K. Chow, 2009. "A Factor Analysis of Trade Integration: the Case of Asian and Oceanic Economies," Economie Internationale, CEPII research center, issue 119, pages 5-23.
    16. El-Shagi, Makram, 2009. "Inflation Expectations: Does the Market Beat Professional Forecasts?," IWH Discussion Papers 16/2009, Halle Institute for Economic Research (IWH).
    17. Davor Kunovac, 2007. "Factor Model Forecasting of Inflation in Croatia," Financial Theory and Practice, Institute of Public Finance, vol. 31(4), pages 371-393.

Articles

  1. Carstensen Kai & Wohlrabe Klaus & Ziegler Christina, 2011. "Predictive Ability of Business Cycle Indicators under Test: A Case Study for the Euro Area Industrial Production," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 82-106, February.
    See citations under working paper version above.
  2. Schnabl, Gunther & Ziegler, Christina, 2011. "Exchange rate and wage policies in Central and Eastern Europe," Journal of Policy Modeling, Elsevier, vol. 33(3), pages 347-360, May.

    Cited by:

    1. Jovanovic, Branimir & Petreski, Marjan, 2014. "Monetary policy, exchange rates and labor unions in SEE and the CIS during the financial crisis," Economic Systems, Elsevier, vol. 38(3), pages 309-332.
    2. Moritz Pfeifer & Gunther Schnabl, 2024. "Monetary Policy, Divergence, and the Euro," CESifo Working Paper Series 11442, CESifo.
    3. Perugini, Cristiano & Pompei, Fabrizio, 2016. "Employment protection and wage inequality within education groups in Europe," Journal of Policy Modeling, Elsevier, vol. 38(5), pages 810-836.

  3. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.

    Cited by:

    1. Brandon J. Bates & Mikkel Plagborg-Møller & James H. Stock & Mark W. Watson, "undated". "Consistent factor estimation in dynamic factor models with structural instability," Working Paper 84631, Harvard University OpenScholar.
    2. Sandra Eickmeier & Tim Ng, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/04, Reserve Bank of New Zealand.
    3. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65, May.
    4. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    5. Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
    6. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    7. Barış Soybilgen, 2020. "Identifying US business cycle regimes using dynamic factors and neural network models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 827-840, August.
    8. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
    9. Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised Feb 2025.
    10. Poncela, Pilar, 2012. "More is not always better : back to the Kalman filter in dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS ws122317, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
    12. Matteo Luciani & Libero Monteforte, 2012. "Uncertainty and Heterogeneity in factor models forecasting," Working Papers 5, Department of the Treasury, Ministry of the Economy and of Finance.
    13. Arabinda Basistha & Richard Startz, 2023. "Measuring Persistent Global Economic Factors with Output, Commodity Price, and Commodity Currency Data," Working Papers 23-05, Department of Economics, West Virginia University.
    14. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2010. "Forecasting with Factor-augmented Error Correction Models," CEPR Discussion Papers 7677, C.E.P.R. Discussion Papers.
    15. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
    16. Ard Reijer, 2013. "Forecasting Dutch GDP and inflation using alternative factor model specifications based on large and small datasets," Empirical Economics, Springer, vol. 44(2), pages 435-453, April.
    17. Marcellino, Massimiliano & Eickmeier, Sandra & Lemke, Wolfgang, 2011. "Classical time-varying FAVAR models - Estimation, forecasting and structural analysis," CEPR Discussion Papers 8321, C.E.P.R. Discussion Papers.
    18. Johannes Tang Kristensen, 2012. "Factor-Based Forecasting in the Presence of Outliers: Are Factors Better Selected and Estimated by the Median than by The Mean?," CREATES Research Papers 2012-28, Department of Economics and Business Economics, Aarhus University.
    19. Robert Lehmann & Klaus Wohlrabe, 2013. "Forecasting gross value-added at the regional level: Are sectoral disaggregated predictions superior to direct ones?," ifo Working Paper Series 171, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    20. Alessandro Giovannelli, 2012. "Nonlinear Forecasting Using Large Datasets: Evidences on US and Euro Area Economies," CEIS Research Paper 255, Tor Vergata University, CEIS, revised 08 Nov 2012.
    21. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    22. Eickmeier, Sandra & Hofmann, Boris, 2010. "Monetary policy, housing booms and financial (im)balances," Discussion Paper Series 1: Economic Studies 2010,07, Deutsche Bundesbank.
    23. Francisco Corona & Graciela González-Farías & Pedro Orraca, 2017. "A dynamic factor model for the Mexican economy: are common trends useful when predicting economic activity?," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-35, December.
    24. Panpan Zhu & Qingjie Zhou & Yinpeng Zhang, 2024. "Investor attention and consumer price index inflation rate: Evidence from the United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    25. Wang, Mu-Chun, 2008. "Comparing the DSGE model with the factor model: an out-of-sample forecasting experiment," Discussion Paper Series 1: Economic Studies 2008,04, Deutsche Bundesbank.
    26. Daniel, Volker & ter Steege, Lucas, 2018. "Inflation Expectations and the Recovery from the Great Depression in Germany," Working Papers 6, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    27. Forni, Mario & Giovannelli, Alessandro & Lippi, Marco & Soccorsi, Stefano, 2016. "Dynamic Factor model with infinite dimensional factor space: forecasting," CEPR Discussion Papers 11161, C.E.P.R. Discussion Papers.
    28. Dominik Bertsche & Ralf Brüggemann & Christian Kascha, 2018. "Directed Graphs and Variable Selection in Large Vector Autoregressive Models," Working Paper Series of the Department of Economics, University of Konstanz 2018-08, Department of Economics, University of Konstanz.
    29. Christian Grimme & Robert Lehmann & Marvin Noeller, 2019. "Forecasting Imports with Information from Abroad," ifo Working Paper Series 294, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    30. Esteban Gómez & Andrés Murcia Pabón & Nancy Zamudio Gómez, 2011. "Financial Conditions Index: Early and Leading Indicator for Colombia?," Temas de Estabilidad Financiera 055, Banco de la Republica de Colombia.
    31. Mahmut Günay, 2015. "Forecasting Turkish Industrial Production Growth With Static Factor Models," International Econometric Review (IER), Econometric Research Association, vol. 7(2), pages 64-78, September.
    32. Bell go, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
    33. Ali Babikir & Henry Mwambi, 2016. "Evaluating the combined forecasts of the dynamic factor model and the artificial neural network model using linear and nonlinear combining methods," Empirical Economics, Springer, vol. 51(4), pages 1541-1556, December.
    34. Bhaghoe, Sailesh & Ooft, Gavin, 2021. "Nowcasting Quarterly GDP Growth in Suriname with Factor-MIDAS and Mixed-Frequency VAR Models," Studies in Applied Economics 176, The Johns Hopkins Institute for Applied Economics, Global Health, and the Study of Business Enterprise.
    35. Christina Anderl & Guglielmo Maria Caporale, 2022. "Forecasting Inflation with a Zero Lower Bound or Negative Interest Rates: Evidence from Point and Density Forecasts," CESifo Working Paper Series 9687, CESifo.
    36. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    37. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    38. Soroosh Soofi-Siavash & Kristina Barauskaite, 2019. "Sectoral Production and Diffusion Index Forecasts for Output in Lithuania," Bank of Lithuania Discussion Paper Series 12, Bank of Lithuania.
    39. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    40. Kemal Bagzibagli, 2012. "Monetary Transmission Mechanism and Time Variation in the Euro Area," Discussion Papers 12-12, Department of Economics, University of Birmingham.
    41. Tony Chernis & Rodrigo Sekkel, 2018. "Nowcasting Canadian Economic Activity in an Uncertain Environment," Discussion Papers 18-9, Bank of Canada.
    42. In Choi & Seong Jin Hwang, 2012. "Forecasting Korean inflation," Working Papers 1202, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    43. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
    44. Lehmann Robert & Wohlrabe Klaus, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
    45. Schumacher, Christian, 2009. "Factor forecasting using international targeted predictors: the case of German GDP," Discussion Paper Series 1: Economic Studies 2009,10, Deutsche Bundesbank.
    46. Ng, Serena, 2013. "Variable Selection in Predictive Regressions," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 752-789, Elsevier.
    47. Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
    48. Soybilgen, Baris, 2018. "Identifying US business cycle regimes using dynamic factors and neural network models," MPRA Paper 94715, University Library of Munich, Germany.
    49. Samvel S. Lazaryan & Nikita E. German, 2018. "Forecasting Current GDP Dynamics With Google Search Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 83-94, December.
    50. Bin Jiang & George Athanasopoulos & Rob J Hyndman & Anastasios Panagiotelis & Farshid Vahid, 2017. "Macroeconomic forecasting for Australia using a large number of predictors," Monash Econometrics and Business Statistics Working Papers 2/17, Monash University, Department of Econometrics and Business Statistics.
    51. Marek Chudý & Erhard Reschenhofer, 2019. "Macroeconomic Forecasting with Factor-Augmented Adjusted Band Regression," Econometrics, MDPI, vol. 7(4), pages 1-14, December.
    52. Heather D. Gibson & Stephen G. Hall & George S. Tavlas, 2020. "A Suggestion for a Dynamic Multi Factor Model (DMFM)," Working Papers 282, Bank of Greece.
    53. In Choi & Jorg Breitung, 2011. "Factor models," Working Papers 1121, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Dec 2011.
    54. Zeyyad Mandalinci, 2015. "Forecasting Inflation in Emerging Markets: An Evaluation of Alternative Models," CReMFi Discussion Papers 3, CReMFi, School of Economics and Finance, QMUL.
    55. Jörg Breitung & Sandra Eickmeier, 2014. "Analyzing business and financial cycles using multi-level factor models," CAMA Working Papers 2014-43, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    56. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    57. Nikolay Robinzonov & Klaus Wohlrabe, 2010. "Freedom of Choice in Macroeconomic Forecasting ," CESifo Economic Studies, CESifo Group, vol. 56(2), pages 192-220, June.
    58. Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
    59. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
    60. Michail Filippidis & George Filis & Georgios Magkonis, 2024. "Evaluating Oil Price Forecasts: A Meta-analysis," The Energy Journal, , vol. 45(2), pages 71-89, March.
    61. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    62. Kyle E. Binder & Mohsen Pourahmadi & James W. Mjelde, 2020. "The role of temporal dependence in factor selection and forecasting oil prices," Empirical Economics, Springer, vol. 58(3), pages 1185-1223, March.
    63. Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
    64. Matteo Luciani, 2011. "Forecasting with Approximate Dynamic Factor Models: the Role of Non-Pervasive Shocks," Working Papers ECARES ECARES 2011‐022, ULB -- Universite Libre de Bruxelles.
    65. Clements, Michael P., 2016. "Real-time factor model forecasting and the effects of instability," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 661-675.
    66. Dimitar EFTIMOSKI, 2019. "Improving Short-Term Forecasting of Macedonian GDP: Comparing the Factor Model with the Macroeconomic Structural Equation Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 32-53, June.
    67. Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting the French index of industrial production: A comparison from bridge and factor models," Economic Modelling, Elsevier, vol. 29(6), pages 2174-2182.
    68. Lenza Michele & Warmedinger Thomas, 2011. "A Factor Model for Euro-area Short-term Inflation Analysis," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 50-62, February.
    69. Jennifer Castle & David Hendry & Oleg Kitov, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
    70. Hande Karabiyik & Joakim Westerlund, 2021. "Forecasting using cross-section average–augmented time series regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 315-333.
    71. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    72. James H. Stock & Mark W. Watson, 2010. "Indicators for Dating Business Cycles: Cross-History Selection and Comparisons," American Economic Review, American Economic Association, vol. 100(2), pages 16-19, May.
    73. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    74. Dominik Bertsche & Ralf Brüggemann & Christian Kascha, 2023. "Directed graphs and variable selection in large vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 223-246, March.
    75. Barhoumi, K. & Darn , O. & Ferrara, L., 2013. "Dynamic Factor Models: A review of the Literature ," Working papers 430, Banque de France.
    76. den Reijer, Ard H.J., 2011. "Regional and sectoral dynamics of the Dutch staffing labor cycle," Economic Modelling, Elsevier, vol. 28(4), pages 1826-1837, July.
    77. Alessandro Barbarino & Efstathia Bura, 2017. "A Unified Framework for Dimension Reduction in Forecasting," Finance and Economics Discussion Series 2017-004, Board of Governors of the Federal Reserve System (U.S.).
    78. Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
    79. Jackson, Karen & Magkonis, Georgios, 2024. "Exchange rate predictability: Fact or fiction?," Journal of International Money and Finance, Elsevier, vol. 142(C).
    80. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    81. Ard Reijer & Andreas Johansson, 2019. "Nowcasting Swedish GDP with a large and unbalanced data set," Empirical Economics, Springer, vol. 57(4), pages 1351-1373, October.
    82. Lübbers, Johannes & Posch, Peter N., 2016. "Commodities' common factor: An empirical assessment of the markets' drivers," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 28-40.

  4. Jonas Dovern & Christina Ziegler, 2008. "Predicting Growth Rates and Recessions. Assessing U.S. Leading Indicators under Real-Time Condition," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 54(4), pages 293-318.

    Cited by:

    1. Deimante Teresiene & Greta Keliuotyte-Staniuleniene & Yiyi Liao & Rasa Kanapickiene & Ruihui Pu & Siyan Hu & Xiao-Guang Yue, 2021. "The Impact of the COVID-19 Pandemic on Consumer and Business Confidence Indicators," JRFM, MDPI, vol. 14(4), pages 1-23, April.
    2. Christina Ziegler, 2009. "Testing Predicitive Ability of Business Cycle Indicators for the Euro Area," ifo Working Paper Series 69, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    3. Fornari, Fabio & Lemke, Wolfgang, 2010. "Predicting recession probabilities with financial variables over multiple horizons," Working Paper Series 1255, European Central Bank.
    4. Boysen-Hogrefe, Jens & Dovern, Jonas & Gern, Klaus-Jürgen & Jannsen, Nils & van Roye, Björn & Scheide, Joachim, 2010. "Erholung der Weltkonjunktur ohne große Dynamik," Open Access Publications from Kiel Institute for the World Economy 32955, Kiel Institute for the World Economy (IfW Kiel).

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 3 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-CBA: Central Banking (3) 2007-01-28 2010-04-04 2012-03-14
  2. NEP-EEC: European Economics (2) 2010-04-04 2012-03-14
  3. NEP-FOR: Forecasting (2) 2007-01-28 2010-04-04
  4. NEP-MAC: Macroeconomics (2) 2007-01-28 2012-03-14
  5. NEP-BEC: Business Economics (1) 2010-04-04
  6. NEP-ECM: Econometrics (1) 2007-01-28
  7. NEP-ETS: Econometric Time Series (1) 2007-01-28
  8. NEP-IFN: International Finance (1) 2012-03-14
  9. NEP-MIC: Microeconomics (1) 2010-04-04
  10. NEP-MON: Monetary Economics (1) 2012-03-14
  11. NEP-TRA: Transition Economics (1) 2012-03-14

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Christina Elisabeth Ziegler should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.