IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2019i2p32-53.html
   My bibliography  Save this article

Improving Short-Term Forecasting of Macedonian GDP: Comparing the Factor Model with the Macroeconomic Structural Equation Model

Author

Listed:
  • Dimitar EFTIMOSKI

    (St. Clement of Ohrid University, Bitola, and Faculty of Business Economics, Skopje, Macedonia.)

Abstract

This paper evaluates two different models for short-term forecasting of the Macedonian GDP : (a) the medium-scale static factor model, based on the static principal components analysis, and (b) the small-scale macroeconomic structural equation model. Recursive dynamic pseudo out-of-sample forecasts, based on a panel of quarterly time series, indicate that forecast errors of the factor model are smaller overall in comparison to errors of the structural equation model at all forecast horizons. In line with the existing short-term GDP forecasting practice, our medium-scale factor model (that extracts common factors from a data set of 52 variables) diversifies and strengthens the current macroeconomic forecasting strategy in Macedonia

Suggested Citation

  • Dimitar EFTIMOSKI, 2019. "Improving Short-Term Forecasting of Macedonian GDP: Comparing the Factor Model with the Macroeconomic Structural Equation Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 32-53, June.
  • Handle: RePEc:rjr:romjef:v::y:2019:i:2:p:32-53
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/rjef/rjef2_19/rjef2_2019p32-53.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Jushan & Wang, Peng, 2014. "Identification theory for high dimensional static and dynamic factor models," Journal of Econometrics, Elsevier, vol. 178(2), pages 794-804.
    2. Mu-Chun Wang, 2009. "Comparing the DSGE model with the factor model: an out-of-sample forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 167-182.
    3. Marie Bessec, 2013. "Short‐Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 500-511, September.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    6. Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
    7. Fuhrer, Jeffrey C & Moore, George R, 1995. "Monetary Policy Trade-offs and the Correlation between Nominal Interest Rates and Real Output," American Economic Review, American Economic Association, vol. 85(1), pages 219-239, March.
    8. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    9. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    10. Magdalena Petrovska & Aneta Krstevska & Nikola Naumovski, 2016. "Forecasting Macedonian Business Cycle Turning Points Using Qual Var Model," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 5(3), pages 61-78.
    11. Schumacher, Christian, 2010. "Factor forecasting using international targeted predictors: The case of German GDP," Economics Letters, Elsevier, vol. 107(2), pages 95-98, May.
    12. Dimitar Eftimoski, 2019. "An assessment of the dynamic effects of monetary policy in Macedonia," Applied Economics Letters, Taylor & Francis Journals, vol. 26(10), pages 823-829, June.
    13. Hall, Stephen, 1995. "Macroeconomics and a Bit More Reality," Economic Journal, Royal Economic Society, vol. 105(431), pages 974-988, July.
    14. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    15. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    16. Bruno Merlevede & Joseph Plasmans & Bas van Aarle, 2003. "A Small Macroeconomic Model of the EU-Accession Countries," Open Economies Review, Springer, vol. 14(3), pages 221-250, July.
    17. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, "undated". "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    18. Glenn Rudebusch & Lars E.O. Svensson, 1999. "Policy Rules for Inflation Targeting," NBER Chapters, in: Monetary Policy Rules, pages 203-262, National Bureau of Economic Research, Inc.
    19. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, March.
    20. Branimir Jovanovic & Magdalena Petrovska, 2010. "Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting," Working Papers 2010-02, National Bank of the Republic of North Macedonia, revised Aug 2010.
    21. Jesús Crespo Cuaresma & Martin Feldkircher & Tomáš Slacík & Julia Wörz, 2009. "Simple but Effective: The OeNB’s Forecasting Model for Selected CESEE Countries," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 84-95.
    22. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    23. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    24. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    25. repec:dau:papers:123456789/10079 is not listed on IDEAS
    26. Jasper de Winter, 2011. "Forecasting GDP growth in times of crisis: private sector forecasts versus statistical models," DNB Working Papers 320, Netherlands Central Bank, Research Department.
    27. Jushan Bai & Peng Wang, 2016. "Econometric Analysis of Large Factor Models," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 53-80, October.
    28. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    29. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    30. Ard Reijer, 2013. "Forecasting Dutch GDP and inflation using alternative factor model specifications based on large and small datasets," Empirical Economics, Springer, vol. 44(2), pages 435-453, April.
    31. Dias, Francisco & Pinheiro, Maximiano & Rua, António, 2015. "Forecasting Portuguese GDP with factor models: Pre- and post-crisis evidence," Economic Modelling, Elsevier, vol. 44(C), pages 266-272.
    32. Klein, Lawrence R. & Roudoi, Andrei & Eskin, Vladimir & Nicolae, Mariana, 2004. "Principal Components Model Of The Romanian Economy. Study Of The Oil Price Impact Upon Gdp," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 1(5), pages 67-80.
    33. Magdalena Petrovska & Gani Ramadani & Nikola Naumovski & Biljana Jovanovic, 2017. "Forecasting Macedonian Inflation: Evaluation of different models for short-term forecasting," Working Papers 2017-06, National Bank of the Republic of North Macedonia.
    34. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    35. Lucian Liviu ALBU & Carlos MatéJIMÉNEZ & Mihaela SIMIONESCU, 2015. "The Assessment of Some Macroeconomic Forecasts for Spain using Aggregated Accuracy Indicators," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 30-47, June.
    36. Antonello D’ Agostino & Domenico Giannone, 2012. "Comparing Alternative Predictors Based on Large‐Panel Factor Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 306-326, April.
    37. Klein, Lawrence R. & Roudoi, Andrei & Eskin, Vladimir & Albu, Lucian Liviu & Stanica, Cristian Nicolae & Nicolae, Mariana & Chilian, Mihaela Nona, 2004. "Principal Components Model Of The Romanian Economy. Gdp – Production Side," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 1(5), pages 52-66.
    38. Ángel Cuevas & Enrique Quilis, 2012. "A factor analysis for the Spanish economy," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(3), pages 311-338, September.
    39. John B. Taylor, 1999. "Monetary Policy Rules," NBER Books, National Bureau of Economic Research, Inc, number tayl99-1.
    40. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    41. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    42. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
    43. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    44. Basdevant, Olivier, 2000. "An econometric model of the Russian Federation," Economic Modelling, Elsevier, vol. 17(2), pages 305-336, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilian DOBRESCU, 2020. "Self-fulfillment degree of economic expectations within an integrated space: The European Union case study," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    2. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    3. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    4. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    5. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    6. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    7. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    8. Dias, Francisco & Pinheiro, Maximiano & Rua, António, 2015. "Forecasting Portuguese GDP with factor models: Pre- and post-crisis evidence," Economic Modelling, Elsevier, vol. 44(C), pages 266-272.
    9. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    10. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    11. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    12. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    13. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    14. António Rua & Francisco Craveiro Dias & Maximiano Pinheiro, 2014. "Forecasting Portuguese GDP with factor models," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    15. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    16. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    17. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    18. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
    19. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    20. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.

    More about this item

    Keywords

    factor model; macroeconomic structural equation model; forecasting and forecasting evaluation; GDP;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2019:i:2:p:32-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.