IDEAS home Printed from https://ideas.repec.org/e/pts78.html
   My authors  Follow this author

Theodoros Tsagaris

Personal Details

First Name:Theodoros
Middle Name:
Last Name:Tsagaris
Suffix:
RePEc Short-ID:pts78
[This author has chosen not to make the email address public]
http://www.theodorostsagaris.com/

Research output

as
Jump to: Working papers Articles

Working papers

  1. Theodoros Tsagaris & Ajay Jasra & Niall Adams, 2010. "Robust and Adaptive Algorithms for Online Portfolio Selection," Papers 1005.2979, arXiv.org.
  2. Theodoros Tsagaris, 2008. "Statistical Arbitrage and Optimal Trading with Transaction Costs in Futures Markets," Papers 0801.3348, arXiv.org.
  3. Giovanni Montana & Kostas Triantafyllopoulos & Theodoros Tsagaris, 2007. "Flexible least squares for temporal data mining and statistical arbitrage," Papers 0709.3884, arXiv.org.

Articles

  1. Theodoros Tsagaris & Ajay Jasra & Niall Adams, 2012. "Robust and adaptive algorithms for online portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1651-1662, November.
  2. Ajay Jasra & David A. Stephens & Arnaud Doucet & Theodoros Tsagaris, 2011. "Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 1-22, March.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Theodoros Tsagaris & Ajay Jasra & Niall Adams, 2010. "Robust and Adaptive Algorithms for Online Portfolio Selection," Papers 1005.2979, arXiv.org.

    Cited by:

    1. Olivier Ledoit & Michael Wolf, 2013. "Spectrum estimation: a unified framework for covariance matrix estimation and PCA in large dimensions," ECON - Working Papers 105, Department of Economics - University of Zurich, revised Jul 2013.

  2. Giovanni Montana & Kostas Triantafyllopoulos & Theodoros Tsagaris, 2007. "Flexible least squares for temporal data mining and statistical arbitrage," Papers 0709.3884, arXiv.org.

    Cited by:

    1. Zsuzsanna Zsibók & Balázs Varga, 2012. "Inflation Persistence in Hungary: a Spatial Analysis," Working Papers 1203, Department of Mathematical Economics and Economic Analysis, Corvinus University of Budapest.
    2. Evžen Kocenda & Balázs Varga, 2017. "The Impact of Monetary Strategies on Inflation Persistence," CESifo Working Paper Series 6306, CESifo.
    3. K. Triantafyllopoulos & G. Montana, 2011. "Dynamic modeling of mean-reverting spreads for statistical arbitrage," Computational Management Science, Springer, vol. 8(1), pages 23-49, April.
    4. Zsolt Darvas & Balẳ Varga, 2014. "Inflation persistence in central and eastern European countries," Applied Economics, Taylor & Francis Journals, vol. 46(13), pages 1437-1448, May.
    5. Josipa VIŠIC & Blanka ŠKRABIC, 2010. "Determinants of Incoming Cross-Border M&A: Evidence from European Transition Economies," EcoMod2010 259600168, EcoMod.
    6. Matthew J. Lebo & Janet M. Box‐Steffensmeier, 2008. "Dynamic Conditional Correlations in Political Science," American Journal of Political Science, John Wiley & Sons, vol. 52(3), pages 688-704, July.
    7. Theodoros Tsagaris & Ajay Jasra & Niall Adams, 2010. "Robust and Adaptive Algorithms for Online Portfolio Selection," Papers 1005.2979, arXiv.org.
    8. Uliha, Gábor, 2016. "Az olajár gyengülő makrogazdasági hatásai. Két versengő elmélet szintézise [Weakening macroeconomic effects of the oil price. A synthesis of two competing theories]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 787-818.
    9. Zsolt Darvas & Balázs Varga, 2012. "Uncovering Time-Varying Parameters with the Kalman-Filter and the Flexible Least Squares: a Monte Carlo Study," Working Papers 1204, Department of Mathematical Economics and Economic Analysis, Corvinus University of Budapest.
    10. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    11. Sheunesu Zhou, 2021. "Examining the Sources of Sovereign Risk for South Africa: A Time Varying Flexible Least Squares Approach," Eurasian Journal of Economics and Finance, Eurasian Publications, vol. 9(1), pages 29-45.
    12. Jeff Stephenson & Bruce Vanstone & Tobias Hahn, 2021. "A Unifying Model for Statistical Arbitrage: Model Assumptions and Empirical Failure," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 943-964, December.
    13. Kuethe, Todd H. & Foster, Kenneth A. & Florax, Raymond J.G.M., 2008. "A Spatial Hedonic Model with Time-Varying Parameters: A New Method Using Flexible Least Squares," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6306, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

Articles

  1. Theodoros Tsagaris & Ajay Jasra & Niall Adams, 2012. "Robust and adaptive algorithms for online portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1651-1662, November.
    See citations under working paper version above.
  2. Ajay Jasra & David A. Stephens & Arnaud Doucet & Theodoros Tsagaris, 2011. "Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 1-22, March.

    Cited by:

    1. Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
    2. Dubiel-Teleszynski, Tomasz & Kalogeropoulos, Konstantinos & Karouzakis, Nikolaos, 2024. "Sequential learning and economic benefits from dynamic term structure models," LSE Research Online Documents on Economics 123659, London School of Economics and Political Science, LSE Library.
    3. Michael Cai & Marco Del Negro & Edward P. Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2019. "Online Estimation of DSGE Models," Liberty Street Economics 20190821, Federal Reserve Bank of New York.
    4. Sophie Donnet & Stéphane Robin, 2021. "Accelerating Bayesian estimation for network Poisson models using frequentist variational estimates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 858-885, August.
    5. Gunawan, David & Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc, 2019. "Subsampling Sequential Monte Carlo for Static Bayesian Models," Working Paper Series 371, Sveriges Riksbank (Central Bank of Sweden).
    6. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    7. Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017. "Autoregressive Moving Average Infinite Hidden Markov-Switching Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 162-182, April.
    8. Qi Wang & Jos'e E. Figueroa-L'opez & Todd Kuffner, 2019. "Bayesian Inference on Volatility in the Presence of Infinite Jump Activity and Microstructure Noise," Papers 1909.04853, arXiv.org.
    9. Ajay Jasra & Kody Law & Carina Suciu, 2020. "Advanced Multilevel Monte Carlo Methods," International Statistical Review, International Statistical Institute, vol. 88(3), pages 548-579, December.
    10. Edward P. Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," Finance and Economics Discussion Series 2016-072, Board of Governors of the Federal Reserve System (U.S.).
    11. Golchi, Shirin & Campbell, David A., 2016. "Sequentially Constrained Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 98-113.
    12. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    13. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    14. Zhou, Yan, 2015. "vSMC: Parallel Sequential Monte Carlo in C++," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i09).
    15. Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2016. "Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1393-1411, September.
    16. Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    17. P. P. Osei & A. Jasra, 2018. "Estimating option prices using multilevel particle filters," Papers 1806.01734, arXiv.org.
    18. Mlikota, Marko & Schorfheide, Frank, 2022. "Sequential Monte Carlo With Model Tempering," CEPR Discussion Papers 17035, C.E.P.R. Discussion Papers.
    19. Dufays, A. & Rombouts, V., 2015. "Sparse Change-Point Time Series Models," LIDAM Discussion Papers CORE 2015032, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Moffa, Giusi & Kuipers, Jack, 2014. "Sequential Monte Carlo EM for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 252-272.
    21. Beatrice Franzolini & Alexandros Beskos & Maria De Iorio & Warrick Poklewski Koziell & Karolina Grzeszkiewicz, 2022. "Change point detection in dynamic Gaussian graphical models: the impact of COVID-19 pandemic on the US stock market," Papers 2208.00952, arXiv.org, revised May 2023.
    22. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2013. "Indirect Inference in fractional short-term interest rate diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 109-126.
    23. Duffield, Samuel & Singh, Sumeetpal S., 2022. "Ensemble Kalman inversion for general likelihoods," Statistics & Probability Letters, Elsevier, vol. 187(C).
    24. Speich, Matthias & Dormann, Carsten F. & Hartig, Florian, 2021. "Sequential Monte-Carlo algorithms for Bayesian model calibration – A review and method comparison✰," Ecological Modelling, Elsevier, vol. 455(C).

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-CMP: Computational Economics (1) 2010-05-29

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Theodoros Tsagaris should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.