vSMC: Parallel Sequential Monte Carlo in C++
Author
Abstract
Suggested Citation
DOI: http://hdl.handle.net/10.18637/jss.v062.i09
Download full text from publisher
References listed on IDEAS
- Johansen, Adam M., 2009. "SMCTC: Sequential Monte Carlo in C++," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(i06).
- repec:dau:papers:123456789/1908 is not listed on IDEAS
- Ajay Jasra & David A. Stephens & Arnaud Doucet & Theodoros Tsagaris, 2011. "Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 1-22, March.
- Calderhead, Ben & Girolami, Mark, 2009. "Estimating Bayes factors via thermodynamic integration and population MCMC," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4028-4045, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Golchi, Shirin & Campbell, David A., 2016. "Sequentially Constrained Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 98-113.
- Arnaud Dufays, 2016.
"Evolutionary Sequential Monte Carlo Samplers for Change-Point Models,"
Econometrics, MDPI, vol. 4(1), pages 1-33, March.
- Arnaud Dufays, 2015. "Evolutionary Sequential Monte Carlo Samplers for Change-point Models," Cahiers de recherche 1518, CIRPEE.
- Arnaud Dufays, 2015. "Evolutionary Sequential Monte Carlo Samplers for Change-point Models," Cahiers de recherche 1508, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Will Penny & Biswa Sengupta, 2016. "Annealed Importance Sampling for Neural Mass Models," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-25, March.
- Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
- Ho, Paul, 2023.
"Global robust Bayesian analysis in large models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
- Paul Ho, 2019. "Global Robust Bayesian Analysis in Large Models," 2019 Meeting Papers 390, Society for Economic Dynamics.
- Paul Ho, 2020. "Global Robust Bayesian Analysis in Large Models," Working Paper 20-07, Federal Reserve Bank of Richmond.
- Marko Mlikota & Frank Schorfheide, 2022.
"Sequential Monte Carlo With Model Tempering,"
Papers
2202.07070, arXiv.org.
- Mlikota, Marko & Schorfheide, Frank, 2022. "Sequential Monte Carlo With Model Tempering," CEPR Discussion Papers 17035, C.E.P.R. Discussion Papers.
- Spezia, Luigi, 2020. "Bayesian variable selection in non-homogeneous hidden Markov models through an evolutionary Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
- Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2021.
"Online estimation of DSGE models,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 33-58.
- Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2019. "Online Estimation of DSGE Models," PIER Working Paper Archive 19-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Michael Cai & Marco Del Negro & Edward P. Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2020. "Online Estimation of DSGE Models," Finance and Economics Discussion Series 2020-023, Board of Governors of the Federal Reserve System (U.S.).
- Michael D. Cai & Marco Del Negro & Edward P. Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2020. "Online Estimation of DSGE Models," NBER Working Papers 26826, National Bureau of Economic Research, Inc.
- Michael Cai & Marco Del Negro & Edward P. Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2019. "Online Estimation of DSGE Models," Staff Reports 893, Federal Reserve Bank of New York.
- Michael Cai & Marco Del Negro & Edward P. Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2019. "Online Estimation of DSGE Models," Liberty Street Economics 20190821, Federal Reserve Bank of New York.
- Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017.
"Autoregressive Moving Average Infinite Hidden Markov-Switching Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 162-182, April.
- Bauwens, Luc & Carpantier, Jean-François & Dufays, Arnaud, 2015. "Autoregressive moving average infinite hidden markov-switching models," LIDAM Discussion Papers CORE 2015007, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017. "Autoregressive Moving Average Infinite Hidden Markov-Switching Models," Post-Print hal-01795051, HAL.
- Luc BAUWENS & Jean-François CARPENTIER & Arnaud DUFAYS, 2017. "Autoregressive moving average infinite hidden Markov-switching models," LIDAM Reprints CORE 2836, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luigi Spezia & Andy Vinten & Roberta Paroli & Marc Stutter, 2021. "An evolutionary Monte Carlo method for the analysis of turbidity high‐frequency time series through Markov switching autoregressive models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Herbst, Edward & Schorfheide, Frank, 2019.
"Tempered particle filtering,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
- Edward P. Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," Finance and Economics Discussion Series 2016-072, Board of Governors of the Federal Reserve System (U.S.).
- Edward Herbst & Frank Schorfheide, 2017. "Tempered Particle Filtering," NBER Working Papers 23448, National Bureau of Economic Research, Inc.
- Edward Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," PIER Working Paper Archive 16-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Oct 2016.
- Moffa, Giusi & Kuipers, Jack, 2014. "Sequential Monte Carlo EM for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 252-272.
- Speich, Matthias & Dormann, Carsten F. & Hartig, Florian, 2021. "Sequential Monte-Carlo algorithms for Bayesian model calibration – A review and method comparison✰," Ecological Modelling, Elsevier, vol. 455(C).
- Marco Grzegorczyk & Andrej Aderhold & Dirk Husmeier, 2017. "Targeting Bayes factors with direct-path non-equilibrium thermodynamic integration," Computational Statistics, Springer, vol. 32(2), pages 717-761, June.
- Sophie Donnet & Stéphane Robin, 2021. "Accelerating Bayesian estimation for network Poisson models using frequentist variational estimates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 858-885, August.
- Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
- Duffield, Samuel & Singh, Sumeetpal S., 2022. "Ensemble Kalman inversion for general likelihoods," Statistics & Probability Letters, Elsevier, vol. 187(C).
- Liu Baisen & Wang Liangliang & Cao Jiguo, 2018. "Bayesian estimation of ordinary differential equation models when the likelihood has multiple local modes," Monte Carlo Methods and Applications, De Gruyter, vol. 24(2), pages 117-127, June.
- Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:062:i09. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.