IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v97y2016icp98-113.html
   My bibliography  Save this article

Sequentially Constrained Monte Carlo

Author

Listed:
  • Golchi, Shirin
  • Campbell, David A.

Abstract

Constraints can be interpreted in a broad sense as any kind of explicit restriction over the parameters. While some constraints are defined directly on the parameter space, when they are instead defined by known behavior on the model, transformation of constraints into features on the parameter space may not be possible. Incorporation of constraints into the model often leads to truncations in the parameter space and multimodality which in turn cause difficulties in posterior sampling. A variant of the Sequential Monte Carlo algorithm is proposed by defining a sequence of densities through the imposition of the constraint. Particles generated from an unconstrained or mildly constrained distribution are filtered and moved through sampling and resampling steps to obtain a sample from the fully constrained target distribution. General and model specific forms of constraints enforcing strategies are defined. The Sequentially Constrained Monte Carlo algorithm is demonstrated on constraints defined by monotonicity of a function, densities constrained to low dimensional manifolds, adherence to a mechanistic differential equation model, and Approximate Bayesian Computation.

Suggested Citation

  • Golchi, Shirin & Campbell, David A., 2016. "Sequentially Constrained Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 98-113.
  • Handle: RePEc:eee:csdana:v:97:y:2016:i:c:p:98-113
    DOI: 10.1016/j.csda.2015.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315002960
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. J. O. Ramsay, 1998. "Estimating smooth monotone functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 365-375.
    3. Simon N. Wood, 2010. "Statistical inference for noisy nonlinear ecological dynamic systems," Nature, Nature, vol. 466(7310), pages 1102-1104, August.
    4. Liang, Hua & Wu, Hulin, 2008. "Parameter Estimation for Differential Equation Models Using a Framework of Measurement Error in Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1570-1583.
    5. Moffa, Giusi & Kuipers, Jack, 2014. "Sequential Monte Carlo EM for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 252-272.
    6. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    7. Ajay Jasra & David A. Stephens & Arnaud Doucet & Theodoros Tsagaris, 2011. "Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 1-22, March.
    8. repec:dau:papers:123456789/5724 is not listed on IDEAS
    9. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    10. Blum, Michael G. B., 2010. "Approximate Bayesian Computation: A Nonparametric Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1178-1187.
    11. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    12. Joyce Paul & Marjoram Paul, 2008. "Approximately Sufficient Statistics and Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-18, August.
    13. Calderhead, Ben & Girolami, Mark, 2009. "Estimating Bayes factors via thermodynamic integration and population MCMC," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4028-4045, October.
    14. Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 96(4), pages 983-990.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    2. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    3. Henri Pesonen & Umberto Simola & Alvaro Köhn‐Luque & Henri Vuollekoski & Xiaoran Lai & Arnoldo Frigessi & Samuel Kaski & David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Jukka Corander, 2023. "ABC of the future," International Statistical Review, International Statistical Institute, vol. 91(2), pages 243-268, August.
    4. Maxime Lenormand & Franck Jabot & Guillaume Deffuant, 2013. "Adaptive approximate Bayesian computation for complex models," Computational Statistics, Springer, vol. 28(6), pages 2777-2796, December.
    5. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    6. Herbst, Edward & Schorfheide, Frank, 2019. "Tempered particle filtering," Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
    7. Moffa, Giusi & Kuipers, Jack, 2014. "Sequential Monte Carlo EM for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 252-272.
    8. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    9. Speich, Matthias & Dormann, Carsten F. & Hartig, Florian, 2021. "Sequential Monte-Carlo algorithms for Bayesian model calibration – A review and method comparison✰," Ecological Modelling, Elsevier, vol. 455(C).
    10. repec:dau:papers:123456789/5724 is not listed on IDEAS
    11. Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019. "Approximate Bayesian forecasting," International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
    12. Gareth W. Peters & Efstathios Panayi & Francois Septier, 2015. "SMC-ABC methods for the estimation of stochastic simulation models of the limit order book," Papers 1504.05806, arXiv.org.
    13. C. C. Drovandi & A. N. Pettitt, 2011. "Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation," Biometrics, The International Biometric Society, vol. 67(1), pages 225-233, March.
    14. Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
    15. repec:bla:istatr:v:83:y:2015:i:3:p:405-435 is not listed on IDEAS
    16. Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
    17. Gunawan, David & Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc, 2019. "Subsampling Sequential Monte Carlo for Static Bayesian Models," Working Paper Series 371, Sveriges Riksbank (Central Bank of Sweden).
    18. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    19. Van Kinh Nguyen & Frank Klawonn & Rafael Mikolajczyk & Esteban A Hernandez-Vargas, 2016. "Analysis of Practical Identifiability of a Viral Infection Model," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-16, December.
    20. Jeremy Heng & Arnaud Doucet & Yvo Pokern, 2021. "Gibbs flow for approximate transport with applications to Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 156-187, February.
    21. Rigat, F. & Mira, A., 2012. "Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1450-1467.
    22. Chopin, Nicolas & Gadat, Sébastien & Guedj, Benjamin & Guyader, Arnaud & Vernet, Elodie, 2015. "On some recent advances in high dimensional Bayesian Statistics," TSE Working Papers 15-557, Toulouse School of Economics (TSE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:97:y:2016:i:c:p:98-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.