IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v38y2011i1p1-22.html
   My bibliography  Save this article

Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo

Author

Listed:
  • AJAY JASRA
  • DAVID A. STEPHENS
  • ARNAUD DOUCET
  • THEODOROS TSAGARIS

Abstract

No abstract is available for this item.

Suggested Citation

  • Ajay Jasra & David A. Stephens & Arnaud Doucet & Theodoros Tsagaris, 2011. "Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 1-22, March.
  • Handle: RePEc:bla:scjsta:v:38:y:2011:i:1:p:1-22
    DOI: j.1467-9469.2010.00723.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-9469.2010.00723.x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/j.1467-9469.2010.00723.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
    2. Luc Bauwens & Jean-François Carpantier & Arnaud Dufays, 2017. "Autoregressive Moving Average Infinite Hidden Markov-Switching Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 162-182, April.
    3. Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2016. "Gradient-based simulated maximum likelihood estimation for stochastic volatility models using characteristic functions," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1393-1411, September.
    4. Herbst, Edward & Schorfheide, Frank, 2019. "Tempered particle filtering," Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
    5. Dubiel-Teleszynski, Tomasz & Kalogeropoulos, Konstantinos & Karouzakis, Nikolaos, 2024. "Sequential learning and economic benefits from dynamic term structure models," LSE Research Online Documents on Economics 123659, London School of Economics and Political Science, LSE Library.
    6. Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2021. "Online estimation of DSGE models," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 33-58.
    7. Sophie Donnet & Stéphane Robin, 2021. "Accelerating Bayesian estimation for network Poisson models using frequentist variational estimates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 858-885, August.
    8. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    9. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    10. P. P. Osei & A. Jasra, 2018. "Estimating option prices using multilevel particle filters," Papers 1806.01734, arXiv.org.
    11. Gunawan, David & Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc, 2019. "Subsampling Sequential Monte Carlo for Static Bayesian Models," Working Paper Series 371, Sveriges Riksbank (Central Bank of Sweden).
    12. Marko Mlikota & Frank Schorfheide, 2022. "Sequential Monte Carlo With Model Tempering," Papers 2202.07070, arXiv.org.
    13. Dufays, A. & Rombouts, V., 2015. "Sparse Change-Point Time Series Models," LIDAM Discussion Papers CORE 2015032, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Qi Wang & Jos'e E. Figueroa-L'opez & Todd Kuffner, 2019. "Bayesian Inference on Volatility in the Presence of Infinite Jump Activity and Microstructure Noise," Papers 1909.04853, arXiv.org.
    15. Ajay Jasra & Kody Law & Carina Suciu, 2020. "Advanced Multilevel Monte Carlo Methods," International Statistical Review, International Statistical Institute, vol. 88(3), pages 548-579, December.
    16. Moffa, Giusi & Kuipers, Jack, 2014. "Sequential Monte Carlo EM for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 252-272.
    17. Beatrice Franzolini & Alexandros Beskos & Maria De Iorio & Warrick Poklewski Koziell & Karolina Grzeszkiewicz, 2022. "Change point detection in dynamic Gaussian graphical models: the impact of COVID-19 pandemic on the US stock market," Papers 2208.00952, arXiv.org, revised May 2023.
    18. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2013. "Indirect Inference in fractional short-term interest rate diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 109-126.
    19. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    20. Duffield, Samuel & Singh, Sumeetpal S., 2022. "Ensemble Kalman inversion for general likelihoods," Statistics & Probability Letters, Elsevier, vol. 187(C).
    21. Golchi, Shirin & Campbell, David A., 2016. "Sequentially Constrained Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 98-113.
    22. Speich, Matthias & Dormann, Carsten F. & Hartig, Florian, 2021. "Sequential Monte-Carlo algorithms for Bayesian model calibration – A review and method comparison✰," Ecological Modelling, Elsevier, vol. 455(C).
    23. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    24. Zhou, Yan, 2015. "vSMC: Parallel Sequential Monte Carlo in C++," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i09).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:38:y:2011:i:1:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.