Tempered particle filtering
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2018.11.003
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Edward Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," PIER Working Paper Archive 16-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Oct 2016.
- Edward Herbst & Frank Schorfheide, 2017. "Tempered Particle Filtering," NBER Working Papers 23448, National Bureau of Economic Research, Inc.
- Edward P. Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," Finance and Economics Discussion Series 2016-072, Board of Governors of the Federal Reserve System (U.S.).
References listed on IDEAS
- Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
- John Geweke, "undated".
"Posterior Simulators in Econometrics,"
Computing in Economics and Finance 1996
_019, Society for Computational Economics.
- John Geweke, 1995. "Posterior simulators in econometrics," Working Papers 555, Federal Reserve Bank of Minneapolis.
- Robert Kollmann, 2013.
"Tractable latent state filtering for non-linear DSGE models using a second-order Approximation,"
CAMA Working Papers
2013-29, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Kollmann, Robert, 2013. "Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation," CEPR Discussion Papers 9469, C.E.P.R. Discussion Papers.
- Robert Kollmann, 2013. "Tractable latent state filtering for non-linear DSGE models using a second-order approximation," Globalization Institute Working Papers 147, Federal Reserve Bank of Dallas.
- Robert Kollmann, 2013. "Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation," Working Papers ECARES ECARES 2013-24, ULB -- Universite Libre de Bruxelles.
- Robert Kollmann, 2015.
"Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation and Pruning,"
Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 239-260, February.
- Robert Kollmann, 2014. "Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation and Pruning," ULB Institutional Repository 2013/250061, ULB -- Universite Libre de Bruxelles.
- Mark Bognanni & Edward P. Herbst, 2014.
"Estimating (Markov-Switching) VAR Models without Gibbs Sampling: A Sequential Monte Carlo Approach,"
Working Papers (Old Series)
1427, Federal Reserve Bank of Cleveland.
- Mark Bognanni & Edward P. Herbst, 2015. "Estimating (Markov-Switching) VAR Models without Gibbs Sampling: A Sequential Monte Carlo Approach," Finance and Economics Discussion Series 2015-116, Board of Governors of the Federal Reserve System (U.S.).
- Frank Smets & Rafael Wouters, 2007.
"Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach,"
American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
- Smets, Frank & Wouters, Raf, 2007. "Shocks and frictions in US business cycles: a Bayesian DSGE approach," Working Paper Series 722, European Central Bank.
- Smets, Frank & Wouters, Rafael, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," CEPR Discussion Papers 6112, C.E.P.R. Discussion Papers.
- Frank Smets & Raf Wouters, 2007. "Shocks and Frictions in US Business Cycles : a Bayesian DSGE Approach," Working Paper Research 109, National Bank of Belgium.
- Herbst, Edward & Schorfheide, Frank, 2019.
"Tempered particle filtering,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
- Edward P. Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," Finance and Economics Discussion Series 2016-072, Board of Governors of the Federal Reserve System (U.S.).
- Edward Herbst & Frank Schorfheide, 2017. "Tempered Particle Filtering," NBER Working Papers 23448, National Bureau of Economic Research, Inc.
- Edward Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," PIER Working Paper Archive 16-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Oct 2016.
- Garland Durham & John Geweke, 2014. "Adaptive Sequential Posterior Simulators for Massively Parallel Computing Environments," Advances in Econometrics, in: Bayesian Model Comparison, volume 34, pages 1-44, Emerald Group Publishing Limited.
- Christopher J. Gust & Edward P. Herbst & J. David López-Salido & Matthew E. Smith, 2012.
"The Empirical Implications of the Interest-Rate Lower Bound,"
Finance and Economics Discussion Series
2012-83, Board of Governors of the Federal Reserve System (U.S.).
- López-Salido, J David & Gust, Christopher & Smith, Matthew E, 2012. "The Empirical Implications of the Interest-Rate Lower Bound," CEPR Discussion Papers 9214, C.E.P.R. Discussion Papers.
- Edward P. Herbst & Frank Schorfheide, 2016. "Bayesian Estimation of DSGE Models," Economics Books, Princeton University Press, edition 1, number 10612.
- Christopher Gust & Edward Herbst & David López-Salido & Matthew E. Smith, 2017.
"The Empirical Implications of the Interest-Rate Lower Bound,"
American Economic Review, American Economic Association, vol. 107(7), pages 1971-2006, July.
- Christopher J. Gust & Edward P. Herbst & J. David López-Salido & Matthew E. Smith, 2012. "The Empirical Implications of the Interest-Rate Lower Bound," Finance and Economics Discussion Series 2012-83, Board of Governors of the Federal Reserve System (U.S.).
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Mark Bognanni & Edward Herbst, 2018. "A sequential Monte Carlo approach to inference in multiple‐equation Markov‐switching models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 126-140, January.
- Ajay Jasra & David A. Stephens & Arnaud Doucet & Theodoros Tsagaris, 2011. "Inference for Lévy‐Driven Stochastic Volatility Models via Adaptive Sequential Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 1-22, March.
- Martin M. Andreasen, 2013. "Non‐Linear Dsge Models And The Central Difference Kalman Filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 929-955, September.
- Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
- Edward Herbst & Frank Schorfheide, 2014.
"Sequential Monte Carlo Sampling For Dsge Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
- Edward P. Herbst & Frank Schorfheide, 2012. "Sequential Monte Carlo sampling for DSGE models," Working Papers 12-27, Federal Reserve Bank of Philadelphia.
- Edward P. Herbst & Frank Schorfheide, 2013. "Sequential Monte Carlo Sampling for DSGE Models," NBER Working Papers 19152, National Bureau of Economic Research, Inc.
- Edward P. Herbst & Frank Schorfheide, 2013. "Sequential Monte Carlo sampling for DSGE models," Finance and Economics Discussion Series 2013-43, Board of Governors of the Federal Reserve System (U.S.).
- repec:dau:papers:123456789/5671 is not listed on IDEAS
- Nicolas Chopin, 2002.
"A sequential particle filter method for static models,"
Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
- Nicolas Chopin, 2000. "A Sequential Particle Filter Method for Static Models," Working Papers 2000-45, Center for Research in Economics and Statistics.
- Drew Creal, 2012.
"A Survey of Sequential Monte Carlo Methods for Economics and Finance,"
Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
- Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
- Pablo Cuba‐Borda & Luca Guerrieri & Matteo Iacoviello & Molin Zhong, 2019.
"Likelihood evaluation of models with occasionally binding constraints,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1073-1085, November.
- Pablo A. Cuba-Borda & Luca Guerrieri & Matteo Iacoviello & Molin Zhong, 2019. "Likelihood Evaluation of Models with Occasionally Binding Constraints," Finance and Economics Discussion Series 2019-028, Board of Governors of the Federal Reserve System (U.S.).
- Wolf, Elias, 2022. "Estimating growth at risk with skewed stochastic volatility models," Discussion Papers 2022/2, Free University Berlin, School of Business & Economics.
- Herbst, Edward & Schorfheide, Frank, 2019.
"Tempered particle filtering,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
- Edward Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," PIER Working Paper Archive 16-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Oct 2016.
- Edward P. Herbst & Frank Schorfheide, 2016. "Tempered Particle Filtering," Finance and Economics Discussion Series 2016-072, Board of Governors of the Federal Reserve System (U.S.).
- Edward Herbst & Frank Schorfheide, 2017. "Tempered Particle Filtering," NBER Working Papers 23448, National Bureau of Economic Research, Inc.
- Sergei Seleznev, 2016. "Solving DSGE models with stochastic trends," Bank of Russia Working Paper Series wps15, Bank of Russia.
- Boehl, Gregor & Strobel, Felix, 2024.
"Estimation of DSGE models with the effective lower bound,"
Journal of Economic Dynamics and Control, Elsevier, vol. 158(C).
- Gregor Boehl, Felix Strobel, 2022. "Estimation of DSGE Models With the Effective Lower Bound," CRC TR 224 Discussion Paper Series crctr224_2022_356, University of Bonn and University of Mannheim, Germany.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Wolf, Elias, 2023. "Estimating Growth at Risk with Skewed Stochastic Volatility Models," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277696, Verein für Socialpolitik / German Economic Association.
- Umberto Picchini & Adeline Samson, 2018. "Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models," Computational Statistics, Springer, vol. 33(1), pages 179-212, March.
- Montes-Galdón, Carlos & Paredes, Joan & Wolf, Elias, 2022.
"Conditional density forecasting: a tempered importance sampling approach,"
Working Paper Series
2754, European Central Bank.
- Wolf, Elias & Montes-Galdón, Carlos & Paredes, Joan, 2024. "Conditional density forecasting: a tempered importance sampling approach," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302442, Verein für Socialpolitik / German Economic Association.
- Minsu Chang, 2019. "A House Without a Ring: The Role of Changing Marital Transitions for Housing Decisions," 2019 Meeting Papers 514, Society for Economic Dynamics.
- Sanha Noh, 2020. "Posterior Inference on Parameters in a Nonlinear DSGE Model via Gaussian-Based Filters," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 795-841, December.
- Andras Fulop & Jeremy Heng & Junye Li, 2022. "Efficient Likelihood-based Estimation via Annealing for Dynamic Structural Macrofinance Models," Papers 2201.01094, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fernández-Villaverde, J. & Rubio-RamÃrez, J.F. & Schorfheide, F., 2016.
"Solution and Estimation Methods for DSGE Models,"
Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724,
Elsevier.
- Rubio-RamÃrez, Juan Francisco & Schorfheide, Frank & Fernández-Villaverde, Jesús, 2015. "Solution and Estimation Methods for DSGE Models," CEPR Discussion Papers 11032, C.E.P.R. Discussion Papers.
- Jesús Fernández-Villaverde & Juan F. Rubio Ramírez & Frank Schorfheide, 2016. "Solution and Estimation Methods for DSGE Models," NBER Working Papers 21862, National Bureau of Economic Research, Inc.
- Jesus Fernandez-Villaverde & Juan Rubio-RamÃrez & Frank Schorfheide, 2015. "Solution and Estimation Methods for DSGE Models," PIER Working Paper Archive 15-042, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 09 Dec 2015.
- Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2021.
"Online estimation of DSGE models,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 33-58.
- Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2019. "Online Estimation of DSGE Models," PIER Working Paper Archive 19-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Michael Cai & Marco Del Negro & Edward P. Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2020. "Online Estimation of DSGE Models," Finance and Economics Discussion Series 2020-023, Board of Governors of the Federal Reserve System (U.S.).
- Michael D. Cai & Marco Del Negro & Edward P. Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2020. "Online Estimation of DSGE Models," NBER Working Papers 26826, National Bureau of Economic Research, Inc.
- Michael Cai & Marco Del Negro & Edward P. Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2019. "Online Estimation of DSGE Models," Staff Reports 893, Federal Reserve Bank of New York.
- Michael Cai & Marco Del Negro & Edward P. Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2019. "Online Estimation of DSGE Models," Liberty Street Economics 20190821, Federal Reserve Bank of New York.
- Pablo Cuba‐Borda & Luca Guerrieri & Matteo Iacoviello & Molin Zhong, 2019.
"Likelihood evaluation of models with occasionally binding constraints,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1073-1085, November.
- Pablo A. Cuba-Borda & Luca Guerrieri & Matteo Iacoviello & Molin Zhong, 2019. "Likelihood Evaluation of Models with Occasionally Binding Constraints," Finance and Economics Discussion Series 2019-028, Board of Governors of the Federal Reserve System (U.S.).
- Arnaud Dufays, 2016.
"Evolutionary Sequential Monte Carlo Samplers for Change-Point Models,"
Econometrics, MDPI, vol. 4(1), pages 1-33, March.
- Arnaud Dufays, 2015. "Evolutionary Sequential Monte Carlo Samplers for Change-point Models," Cahiers de recherche 1518, CIRPEE.
- Arnaud Dufays, 2015. "Evolutionary Sequential Monte Carlo Samplers for Change-point Models," Cahiers de recherche 1508, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2022.
"Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(6), pages 1637-1671, September.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2018. "Estimating a nonlinear new Keynesian model with the zero lower bound for Japan," CAMA Working Papers 2018-37, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2020. "Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan," Working Papers e154, Tokyo Center for Economic Research.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2018. "Estimating a Nonlinear New Keynesian Model with a Zero Lower Bound for Japan," Working Papers e120, Tokyo Center for Economic Research.
- Mark Bognanni & John Zito, 2019. "Sequential Bayesian Inference for Vector Autoregressions with Stochastic Volatility," Working Papers 19-29, Federal Reserve Bank of Cleveland.
- Markku Lanne & Jani Luoto, 2018. "Data†Driven Identification Constraints for DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 236-258, April.
- Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
- Zhang, Jinyu & Zhang, Qiaosen & Li, Yong & Wang, Qianchao, 2023. "Sequential Bayesian inference for agent-based models with application to the Chinese business cycle," Economic Modelling, Elsevier, vol. 126(C).
- Christopher Gust & Edward Herbst & David López-Salido & Matthew E. Smith, 2017.
"The Empirical Implications of the Interest-Rate Lower Bound,"
American Economic Review, American Economic Association, vol. 107(7), pages 1971-2006, July.
- López-Salido, J David & Gust, Christopher & Smith, Matthew E, 2012. "The Empirical Implications of the Interest-Rate Lower Bound," CEPR Discussion Papers 9214, C.E.P.R. Discussion Papers.
- Christopher J. Gust & Edward P. Herbst & J. David López-Salido & Matthew E. Smith, 2012. "The Empirical Implications of the Interest-Rate Lower Bound," Finance and Economics Discussion Series 2012-83, Board of Governors of the Federal Reserve System (U.S.).
- Ho, Paul, 2023.
"Global robust Bayesian analysis in large models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
- Paul Ho, 2019. "Global Robust Bayesian Analysis in Large Models," 2019 Meeting Papers 390, Society for Economic Dynamics.
- Paul Ho, 2020. "Global Robust Bayesian Analysis in Large Models," Working Paper 20-07, Federal Reserve Bank of Richmond.
- Martin Burda & Remi Daviet, 2023.
"Hamiltonian sequential Monte Carlo with application to consumer choice behavior,"
Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 54-77, January.
- Martin Burda & Remi Daviet, 2018. "Hamiltonian Sequential Monte Carlo with Application to Consumer Choice Behavior," Working Papers tecipa-618, University of Toronto, Department of Economics.
- Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018.
"Monte Carlo Confidence Sets for Identified Sets,"
Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
- Xiaohong Chen & Timothy Christensen & Elie Tamer, 2016. "Monte Carlo Confidence sets for Identified Sets," Cowles Foundation Discussion Papers 2037R2, Cowles Foundation for Research in Economics, Yale University, revised Sep 2017.
- Xiaohong Chen & Timothy Christensen & Elie Tamer, 2016. "Monte Carlo Confidence Sets for Identified Sets," Papers 1605.00499, arXiv.org, revised Sep 2017.
- Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2017. "Monte Carlo confidence sets for identified sets," CeMMAP working papers CWP43/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- S Borağan Aruoba & Pablo Cuba-Borda & Frank Schorfheide, 2018.
"Macroeconomic Dynamics Near the ZLB: A Tale of Two Countries,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(1), pages 87-118.
- S. BoraÄŸan Aruoba & Pablo Cuba-Borda & Frank Schorfheide, 2012. "Macroeconomic Dynamics Near the ZLB: A Tale of Two Countries," PIER Working Paper Archive 14-035, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 19 Jun 2014.
- S. Borağan Aruoba & Pablo Cuba-Borda & Frank Schorfheide, 2013. "Macroeconomic Dynamics Near the ZLB: A Tale of Two Countries," NBER Working Papers 19248, National Bureau of Economic Research, Inc.
- S. Boragan Aruoba & Pablo A. Cuba-Borda & Frank Schorfheide, 2016. "Macroeconomic Dynamics Near the ZLB : A Tale of Two Countries," International Finance Discussion Papers 1163, Board of Governors of the Federal Reserve System (U.S.).
- Atkinson, Tyler & Richter, Alexander W. & Throckmorton, Nathaniel A., 2020.
"The zero lower bound and estimation accuracy,"
Journal of Monetary Economics, Elsevier, vol. 115(C), pages 249-264.
- Tyler Atkinson & Alexander W. Richter & Nathaniel A. Throckmorton, 2018. "The Zero Lower Bound and Estimation Accuracy," Working Papers 1804, Federal Reserve Bank of Dallas.
- Takefumi Yamazaki, 2018. "Financial friction sources in emerging economies: Structural estimation of sovereign default models," Discussion papers ron303, Policy Research Institute, Ministry of Finance Japan.
- Luisa Corrado & Stefano Grassi & Aldo Paolillo, 2021.
"Modelling and Estimating Large Macroeconomic Shocks During the Pandemic,"
CREATES Research Papers
2021-08, Department of Economics and Business Economics, Aarhus University.
- Luisa Corrado & Stefano Grassi & Aldo Paolillo, 2021. "Modelling and Estimating Large Macroeconomic Shocks During the Pandemic," National Institute of Economic and Social Research (NIESR) Discussion Papers 530, National Institute of Economic and Social Research.
- Mark Bognanni & Edward P. Herbst, 2014.
"Estimating (Markov-Switching) VAR Models without Gibbs Sampling: A Sequential Monte Carlo Approach,"
Working Papers (Old Series)
1427, Federal Reserve Bank of Cleveland.
- Mark Bognanni & Edward P. Herbst, 2015. "Estimating (Markov-Switching) VAR Models without Gibbs Sampling: A Sequential Monte Carlo Approach," Finance and Economics Discussion Series 2015-116, Board of Governors of the Federal Reserve System (U.S.).
- Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
- Markku Lanne & Jani Luoto, 2015. "Estimation of DSGE Models under Diffuse Priors and Data-Driven Identification Constraints," CREATES Research Papers 2015-37, Department of Economics and Business Economics, Aarhus University.
More about this item
Keywords
Bayesian analysis; DSGE models; Nonlinear filtering; Monte Carlo methods;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:210:y:2019:i:1:p:26-44. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.