IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v8y2011i1p23-49.html
   My bibliography  Save this article

Dynamic modeling of mean-reverting spreads for statistical arbitrage

Author

Listed:
  • K. Triantafyllopoulos
  • G. Montana

Abstract

Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean-reverting spreads enjoying a certain degree of predictability. Gaussian linear state-space processes have recently been proposed as a model for such spreads under the assumption that the observed process is a noisy realization of some hidden states. Real-time estimation of the unobserved spread process can reveal temporary market inefficiencies which can then be exploited to generate excess returns. Building on previous work, we embrace the state-space framework for modeling spread processes and extend this methodology along three different directions. First, we introduce time-dependency in the model parameters, which allows for quick adaptation to changes in the data generating process. Second, we provide an on-line estimation algorithm that can be constantly run in real-time. Being computationally fast, the algorithm is particularly suitable for building aggressive trading strategies based on high-frequency data and may be used as a monitoring device for mean-reversion. Finally, our framework naturally provides informative uncertainty measures of all the estimated parameters. Experimental results based on Monte Carlo simulations and historical equity data are discussed, including a co-integration relationship involving two exchange-traded funds.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • K. Triantafyllopoulos & G. Montana, 2011. "Dynamic modeling of mean-reverting spreads for statistical arbitrage," Computational Management Science, Springer, vol. 8(1), pages 23-49, April.
  • Handle: RePEc:spr:comgts:v:8:y:2011:i:1:p:23-49
    DOI: 10.1007/s10287-009-0105-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-009-0105-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-009-0105-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chaudhuri, Kausik & Wu, Yangru, 2003. "Random walk versus breaking trend in stock prices: Evidence from emerging markets," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 575-592, April.
    2. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    3. Kalaba, Robert & Tesfatsion, Leigh, 1988. "The flexible least squares approach to time-varying linear regression," Journal of Economic Dynamics and Control, Elsevier, vol. 12(1), pages 43-48, March.
    4. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    5. Ni, Shawn & Sun, Dongchu, 2003. "Noninformative priors and frequentist risks of bayesian estimators of vector-autoregressive models," Journal of Econometrics, Elsevier, vol. 115(1), pages 159-197, July.
    6. Francq, C. & Zakoian, J. -M., 2001. "Stationarity of multivariate Markov-switching ARMA models," Journal of Econometrics, Elsevier, vol. 102(2), pages 339-364, June.
    7. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    8. Paul L. Anderson & Mark M. Meerschaert, 2005. "Parameter Estimation for Periodically Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 489-518, July.
    9. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    10. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    11. Monahan, John F., 1983. "Fully Bayesian analysis of ARMA time series models," Journal of Econometrics, Elsevier, vol. 21(3), pages 307-331, April.
    12. Carcano, G. & Falbo, P. & Stefani, S., 2005. "Speculative trading in mean reverting markets," European Journal of Operational Research, Elsevier, vol. 163(1), pages 132-144, May.
    13. Giovanni Montana & Kostas Triantafyllopoulos & Theodoros Tsagaris, 2007. "Flexible least squares for temporal data mining and statistical arbitrage," Papers 0709.3884, arXiv.org.
    14. Kadane, Joseph B. & Chan, Ngai Hang & Wolfson, Lara J., 1996. "Priors for unit root models," Journal of Econometrics, Elsevier, vol. 75(1), pages 99-111, November.
    15. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    16. Phillips, Peter C B & Ouliaris, S, 1990. "Asymptotic Properties of Residual Based Tests for Cointegration," Econometrica, Econometric Society, vol. 58(1), pages 165-193, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiseop Lee & Tim Leung & Boming Ning, 2023. "A Diversification Framework for Multiple Pairs Trading Strategies," Risks, MDPI, vol. 11(5), pages 1-18, May.
    2. Tim Leung & Brian Ward, 2015. "The golden target: analyzing the tracking performance of leveraged gold ETFs," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(3), pages 278-297, August.
    3. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    4. Adrian Pizzinga & Marcelo Fernandes, 2021. "Extensions to the invariance property of maximum likelihood estimation for affine‐transformed state‐space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 355-371, May.
    5. Yerkin Kitapbayev & Tim Leung, 2018. "Mean Reversion Trading With Sequential Deadlines And Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-22, February.
    6. David S. Sun & Shih-Chuan Tsai & Wei Wang, 2013. "Behavioral Investment Strategy Matters: A Statistical Arbitrage Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 49(S3), pages 47-61, July.
    7. Trent Spears & Stefan Zohren & Stephen Roberts, 2023. "On statistical arbitrage under a conditional factor model of equity returns," Papers 2309.02205, arXiv.org.
    8. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    9. Tim Leung & Xin Li, 2015. "Optimal Mean Reversion Trading With Transaction Costs And Stop-Loss Exit," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-31.
    10. Boming Ning & Prakash Chakraborty & Kiseop Lee, 2023. "Optimal Entry and Exit with Signature in Statistical Arbitrage," Papers 2309.16008, arXiv.org, revised Mar 2024.
    11. Kevin Guo & Tim Leung, 2016. "Understanding the Tracking Errors of Commodity Leveraged ETFs," Papers 1610.09404, arXiv.org.
    12. Focardi, Sergio M. & Fabozzi, Frank J. & Mitov, Ivan K., 2016. "A new approach to statistical arbitrage: Strategies based on dynamic factor models of prices and their performance," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 134-155.
    13. Bolgun, Evren & Kurun, Engin & Guven, Serhat, 2009. "Dynamic Pairs Trading Strategy For The Companies Listed In The Istanbul Stock Exchange," MPRA Paper 19887, University Library of Munich, Germany.
    14. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    15. João Frois Caldeira & Gulherme Valle Moura, 2013. "Selection of a Portfolio of Pairs Based on Cointegration: A Statistical Arbitrage Strategy," Brazilian Review of Finance, Brazilian Society of Finance, vol. 11(1), pages 49-80.
    16. Martial Phélippé-Guinvarc'H & Jean Cordier, 2015. "Machine Learning for Semi-Strong Efficiency Test of Inter-Market Wheat Futures," Post-Print hal-02151848, HAL.
    17. Kevin Guo & Tim Leung & Brian Ward, 2019. "How to mine gold without digging," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-30, March.
    18. Boming Ning & Kiseop Lee, 2024. "Advanced Statistical Arbitrage with Reinforcement Learning," Papers 2403.12180, arXiv.org.
    19. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanouil Mavrakis & Christos Alexakis, 2018. "Statistical Arbitrage Strategies under Different Market Conditions: The Case of the Greek Banking Sector," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2), pages 159-185, August.
    2. Tim Bollerslev & Robert J. Hodrick, 1992. "Financial Market Efficiency Tests," NBER Working Papers 4108, National Bureau of Economic Research, Inc.
    3. Zacharias Psaradakis & Martin Sola & Fabio Spagnolo, 2004. "On Markov error-correction models, with an application to stock prices and dividends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(1), pages 69-88.
    4. van Amano, Robert A & Norden, Simon, 1998. "Exchange Rates and Oil Prices," Review of International Economics, Wiley Blackwell, vol. 6(4), pages 683-694, November.
    5. Canzoneri, Matthew B. & Cumby, Robert E. & Diba, Behzad, 1999. "Relative labor productivity and the real exchange rate in the long run: evidence for a panel of OECD countries," Journal of International Economics, Elsevier, vol. 47(2), pages 245-266, April.
    6. Norah Al-Ballaa, 2005. "Test for cointegration based on two-stage least squares," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 707-713.
    7. repec:adr:anecst:y:1998:i:52:p:01 is not listed on IDEAS
    8. Christou, Christina & Gupta, Rangan & Nyakabawo, Wendy & Wohar, Mark E., 2018. "Do house prices hedge inflation in the US? A quantile cointegration approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 15-26.
    9. Pat Wilson & John Okunev & Guy Ta, 1994. "Are Real Estate and Securities Markets Integrated? Some Australian Evidence," Working Paper Series 42, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    10. Ricardo M. Sousa, 2011. "Wealth, Labour Income, Stock Returns and Government Bond Yields, and Financial Stress in the Euro Area," NIPE Working Papers 22/2011, NIPE - Universidade do Minho.
    11. Oscar Bajo-Rubio & María Montero-Muñoz, 2001. "Foreign Direct Investment and Trade: A Causality Analysis," Open Economies Review, Springer, vol. 12(3), pages 305-323, July.
    12. Narayan, Paresh Kumar & Smyth, Russell, 2007. "Mean reversion versus random walk in G7 stock prices evidence from multiple trend break unit root tests," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(2), pages 152-166, April.
    13. Kim, Hyeongwoo & Kim, Jintae, 2018. "London calling: Nonlinear mean reversion across national stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 265-277.
    14. Smeekes, Stephan & Wijler, Etienne, 2021. "An automated approach towards sparse single-equation cointegration modelling," Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
    15. Nick Hanley & Les Oxley & David Greasley & Eoin McLaughlin & Matthias Blum, 2016. "Empirical Testing of Genuine Savings as an Indicator of Weak Sustainability: A Three-Country Analysis of Long-Run Trends," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(2), pages 313-338, February.
    16. Gordon de Brouwer & Irene Ng & Robert Subbaraman, 1993. "The Demand for Money in Australia: New Tests on an Old Topic," RBA Research Discussion Papers rdp9314, Reserve Bank of Australia.
    17. Creti, Anna & Jouvet, Pierre-André & Mignon, Valérie, 2012. "Carbon price drivers: Phase I versus Phase II equilibrium?," Energy Economics, Elsevier, vol. 34(1), pages 327-334.
    18. Warne, Anders, 2006. "Bayesian inference in cointegrated VAR models: with applications to the demand for euro area M3," Working Paper Series 692, European Central Bank.
    19. Narayan, Paresh Kumar & Narayan, Seema & Mishra, Sagarika, 2013. "Has the structural break slowed down growth rates of stock markets?," Economic Modelling, Elsevier, vol. 30(C), pages 595-601.
    20. Bibhuti Ranjan Mishra & Asit Mohanty, 2017. "An Empirical Analysis of Aggregate Import Demand Function for India," Global Economy Journal (GEJ), World Scientific Publishing Co. Pte. Ltd., vol. 17(4), pages 1-12, December.
    21. Felix Schindler, 2013. "Predictability and Persistence of the Price Movements of the S&P/Case-Shiller House Price Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 46(1), pages 44-90, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:8:y:2011:i:1:p:23-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.