IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i10p2237-2258.html
   My bibliography  Save this article

Interventions Targeting Deep Tissue Lymph Nodes May Not Effectively Reduce the Risk of Salmonellosis from Ground Pork Consumption: A Quantitative Microbial Risk Assessment

Author

Listed:
  • Yangjunna Zhang
  • Annette M. O'Connor
  • Chong Wang
  • James S. Dickson
  • H. Scott Hurd
  • Bing Wang

Abstract

The inclusion of deep tissue lymph nodes (DTLNs) or nonvisceral lymph nodes contaminated with Salmonella in wholesale fresh ground pork (WFGP) production may pose risks to public health. To assess the relative contribution of DTLNs to human salmonellosis occurrence associated with ground pork consumption and to investigate potential critical control points in the slaughter‐to‐table continuum for the control of human salmonellosis in the United States, a quantitative microbial risk assessment (QMRA) model was established. The model predicted an average of 45 cases of salmonellosis (95% CI = [19, 71]) per 100,000 Americans annually due to WFGP consumption. Sensitivity analysis of all stochastic input variables showed that cooking temperature was the most influential parameter for reducing salmonellosis cases associated with WFGP meals, followed by storage temperature and Salmonella concentration on contaminated carcass surface before fabrication. The input variables were grouped to represent three main factors along the slaughter‐to‐table chain influencing Salmonella doses ingested via WFGP meals: DTLN‐related factors, factors at processing other than DTLNs, and consumer‐related factors. The evaluation of the impact of each group of factors by second‐order Monte Carlo simulation showed that DTLN‐related factors had the lowest impact on the risk estimate among the three groups of factors. These findings indicate that interventions to reduce Salmonella contamination in DTLNs or to remove DTLNs from WFGP products may be less critical for reducing human infections attributable to ground pork than improving consumers’ cooking habits or interventions of carcass decontamination at processing.

Suggested Citation

  • Yangjunna Zhang & Annette M. O'Connor & Chong Wang & James S. Dickson & H. Scott Hurd & Bing Wang, 2019. "Interventions Targeting Deep Tissue Lymph Nodes May Not Effectively Reduce the Risk of Salmonellosis from Ground Pork Consumption: A Quantitative Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2237-2258, October.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:10:p:2237-2258
    DOI: 10.1111/risa.13317
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13317
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kaatje Els Bollaerts & Winy Messens & Laurent Delhalle & Marc Aerts & Yves Van der Stede & Jeroen Dewulf & Sophie Quoilin & Dominiek Maes & Koen Mintiens & Koen Grijspeerdt, 2009. "Development of a Quantitative Microbial Risk Assessment for Human Salmonellosis Through Household Consumption of Fresh Minced Pork Meat in Belgium," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 820-840, June.
    2. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    3. Hanan Smadi & Jan M. Sargeant, 2013. "Quantitative Risk Assessment of Human Salmonellosis in Canadian Broiler Chicken Breast from Retail to Consumption," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 232-248, February.
    4. Hoffman, Sandra & Maculloch, Bryan & Batz, Michael, 2015. "Economic Burden of Major Foodborne Illnesses Acquired in the United States," Economic Information Bulletin 205081, United States Department of Agriculture, Economic Research Service.
    5. Tine Hald & David Vose & Henrik C. Wegener & Timour Koupeev, 2004. "A Bayesian Approach to Quantify the Contribution of Animal‐Food Sources to Human Salmonellosis," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 255-269, February.
    6. A. N. Swart & F. van Leusden & M. J. Nauta, 2016. "A QMRA Model for Salmonella in Pork Products During Preparation and Consumption," Risk Analysis, John Wiley & Sons, vol. 36(3), pages 516-530, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoffman, Sandra & Ashton, Lydia & Todd, Jessica E & Ahn, Jae-Wan & Berck, Peter, 2021. "Attributing U.S. Campylobacteriosis Cases to Food Sources, Season, and Temperature," Economic Research Report 327200, United States Department of Agriculture, Economic Research Service.
    2. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    3. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    4. Petra Mullner & Geoff Jones & Alasdair Noble & Simon E. F. Spencer & Steve Hathaway & Nigel Peter French, 2009. "Source Attribution of Food‐Borne Zoonoses in New Zealand: A Modified Hald Model," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 970-984, July.
    5. K. Glass & E. Fearnley & H. Hocking & J. Raupach & M. Veitch & L. Ford & M. D. Kirk, 2016. "Bayesian Source Attribution of Salmonellosis in South Australia," Risk Analysis, John Wiley & Sons, vol. 36(3), pages 561-570, March.
    6. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    7. Evans, Keith S. & Teisl, Mario F. & Lando, Amy. M. & Liu, Sherry T., 2020. "Risk perceptions and food-handling practices in the home," Food Policy, Elsevier, vol. 95(C).
    8. Elaine O Nsoesie & Richard J Beckman & Madhav V Marathe, 2012. "Sensitivity Analysis of an Individual-Based Model for Simulation of Influenza Epidemics," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-16, October.
    9. Makofske, Matthew Philip, 2021. "Spoiled food and spoiled surprises: Inspection anticipation and regulatory compliance," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 348-365.
    10. Agee, Philip & Nikdel, Leila & McCoy, Andrew & Kianpour rad, Simin & Gao, Xinghua, 2024. "Manufactured housing: Energy burden outcomes from measured and simulated building performance data," Energy Policy, Elsevier, vol. 186(C).
    11. Hoffmann, Sandra & Ahn, Jae-Wan, 2021. "Updating Economic Burden of Foodborne Diseases Estimates for Inflation and Income Growth," USDA Miscellaneous 316343, United States Department of Agriculture.
    12. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    13. Ray Huffaker & Monika Hartmann, 2021. "Reconstructing dynamics of foodborne disease outbreaks in the US cattle market from monitoring data," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-15, January.
    14. C. L. Smith & E. Borgonovo, 2007. "Decision Making During Nuclear Power Plant Incidents—A New Approach to the Evaluation of Precursor Events," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1027-1042, August.
    15. Phillip M. Gurman & Tom Ross & Andreas Kiermeier, 2018. "Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2625-2645, December.
    16. Jose Luiz F. Barbosa & Antonio P. Coimbra & Dan Simon & Wesley P. Calixto, 2022. "Optimization Process Applied in the Thermal and Luminous Design of High Power LED Luminaires," Energies, MDPI, vol. 15(20), pages 1-28, October.
    17. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    18. Carla L. Simões & Ricardo Simoes & Ana Sofia Gonçalves & Leonel J. R. Nunes, 2023. "Environmental Analysis of the Valorization of Woody Biomass Residues: A Comparative Study with Vine Pruning Leftovers in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    19. Retno Agustarini & Yetti Heryati & Yelin Adalina & Wahyu Catur Adinugroho & Dhany Yuniati & Rizki Ary Fambayun & Gerhard Eli Sabastian & Asep Hidayat & Hesti Lestari Tata & William Ingram & Aulia Perd, 2022. "The Development of Indigofera spp. as a Source of Natural Dyes to Increase Community Incomes on Timor Island, Indonesia," Economies, MDPI, vol. 10(2), pages 1-30, February.
    20. Sumeet R. Patil & H. Christopher Frey, 2004. "Comparison of Sensitivity Analysis Methods Based on Applications to a Food Safety Risk Assessment Model," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 573-585, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:10:p:2237-2258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.