IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v38y2018i12p2625-2645.html
   My bibliography  Save this article

Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home

Author

Listed:
  • Phillip M. Gurman
  • Tom Ross
  • Andreas Kiermeier

Abstract

Pork burgers could be expected to have an elevated risk of salmonellosis compared to other pork products due to their comminuted nature. A stochastic risk assessment was performed to estimate the risk of salmonellosis from Australian pork burgers and considered risk‐affecting factors in the pork supply chain from retail to consumption at home. Conditions modeled included prevalence and concentration of Salmonella in pork mince, time and temperature effects during retail, consumer transport, and domestic storage and the effect of cooking, with the probability of illness from consumption estimated based on these effects. The model was two‐dimensional, allowing for the separation of variability and uncertainty. Potential changes to production practices and consumer behaviors were examined through alternative scenarios. Under current conditions in Australia, the mean risk of salmonellosis from consumption of 100 g pork burgers was estimated to be 1.54×10−8 per serving or one illness per 65,000,000 servings consumed. Under a scenario in which all pork mince consumed is served as pork burgers, and with conservative (i.e., worst‐case) assumptions, 0.746 cases of salmonellosis per year from pork burgers in Australia were predicted. Despite the adoption of several conservative assumptions to fill data gaps, it is predicted that pork burgers have a low probability of causing salmonellosis in Australia.

Suggested Citation

  • Phillip M. Gurman & Tom Ross & Andreas Kiermeier, 2018. "Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2625-2645, December.
  • Handle: RePEc:wly:riskan:v:38:y:2018:i:12:p:2625-2645
    DOI: 10.1111/risa.13163
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13163
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andreas Kiermeier & Ian Jenson & John Sumner, 2015. "Risk Assessment of Escherichia coli O157 Illness from Consumption of Hamburgers in the United States Made from Australian Manufacturing Beef," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 77-89, January.
    2. Kaatje Els Bollaerts & Winy Messens & Laurent Delhalle & Marc Aerts & Yves Van der Stede & Jeroen Dewulf & Sophie Quoilin & Dominiek Maes & Koen Mintiens & Koen Grijspeerdt, 2009. "Development of a Quantitative Microbial Risk Assessment for Human Salmonellosis Through Household Consumption of Fresh Minced Pork Meat in Belgium," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 820-840, June.
    3. Marie Laure Delignette-Muller & Christophe Dutang, 2015. "fitdistrplus : An R Package for Fitting Distributions," Post-Print hal-01616147, HAL.
    4. Peter F. M. Teunis & Nico J. D. Nagelkerke & Charles N. Haas, 1999. "Dose Response Models For Infectious Gastroenteritis," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1251-1260, December.
    5. K. Glass & E. Fearnley & H. Hocking & J. Raupach & M. Veitch & L. Ford & M. D. Kirk, 2016. "Bayesian Source Attribution of Salmonellosis in South Australia," Risk Analysis, John Wiley & Sons, vol. 36(3), pages 561-570, March.
    6. Delignette-Muller, Marie Laure & Dutang, Christophe, 2015. "fitdistrplus: An R Package for Fitting Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i04).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huan Xu & Jing Liu & Mengqi Yuan & Cuifang Tian & Ting Lin & Jiawen Liu & Olivera Castro Osaris Caridad & Yingjie Pan & Yong Zhao & Zhaohuan Zhang, 2022. "Risk Reduction Assessment of Vibrio parahaemolyticus on Shrimp by a Chinese Eating Habit," IJERPH, MDPI, vol. 20(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schulte, Benedikt & Sachs, Anna-Lena, 2020. "The price-setting newsvendor with Poisson demand," European Journal of Operational Research, Elsevier, vol. 283(1), pages 125-137.
    2. Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
    3. K. G. Reddy & M. G. M. Khan, 2020. "stratifyR: An R Package for optimal stratification and sample allocation for univariate populations," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 383-405, September.
    4. Chen, Shang & He, Liang & Cao, Yinxuan & Wang, Runhong & Wu, Lianhai & Wang, Zhao & Zou, Yufeng & Siddique, Kadambot H.M. & Xiong, Wei & Liu, Manshuang & Feng, Hao & Yu, Qiang & Wang, Xiaoming & He, J, 2021. "Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    6. Minji Lee & Sun Ju Chung & Youngjo Lee & Sera Park & Jun-Gun Kwon & Dai Jin Kim & Donghwan Lee & Jung-Seok Choi, 2020. "Investigation of Correlated Internet and Smartphone Addiction in Adolescents: Copula Regression Analysis," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    7. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    8. Adam R. Martin & Rachel O. Mariani & Kimberley A. Cathline & Michael Duncan & Nicholas J. Paroshy & Gavin Robertson, 2022. "Soil Compaction Drives an Intra-Genotype Leaf Economics Spectrum in Wine Grapes," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    9. Héctor Nájera & David Gordon, 2023. "A Monte Carlo Study of Some Empirical Methods to Find the Optimal Poverty Line in Multidimensional Poverty Measurement," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 167(1), pages 391-419, June.
    10. Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    11. Valentas Gruzauskas & Aurelija Burinskiene & Andrius Krisciunas, 2023. "Application of Information-Sharing for Resilient and Sustainable Food Delivery in Last-Mile Logistics," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    12. Amanda M. Wilson & Kelly A. Reynolds & Marc P. Verhougstraete & Robert A. Canales, 2019. "Validation of a Stochastic Discrete Event Model Predicting Virus Concentration on Nurse Hands," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1812-1824, August.
    13. Wang, Xialin & Nuppenau, Ernst-August, 2021. "Modelling payments for ecosystem services for solving future water conflicts at spatial scales: The Okavango River Basin example," Ecological Economics, Elsevier, vol. 184(C).
    14. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    15. Kun Mo Lee & Min Hyeok Lee & Jong Seok Lee & Joo Young Lee, 2020. "Uncertainty Analysis of Greenhouse Gas (GHG) Emissions Simulated by the Parametric Monte Carlo Simulation and Nonparametric Bootstrap Method," Energies, MDPI, vol. 13(18), pages 1-15, September.
    16. Alexander Webb & Pramesh Kumar & Alireza Khani, 2020. "Estimation of passenger waiting time using automatically collected transit data," Public Transport, Springer, vol. 12(2), pages 299-311, June.
    17. Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
    18. Bejarano, Adriana C. & Wells, Randall S. & Costa, Daniel P., 2017. "Development of a bioenergetic model for estimating energy requirements and prey biomass consumption of the bottlenose dolphin Tursiops truncatus," Ecological Modelling, Elsevier, vol. 356(C), pages 162-172.
    19. Negahban, Ashkan, 2019. "Simulation-based estimation of the real demand in bike-sharing systems in the presence of censoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 317-332.
    20. Kalanka P. Jayalath, 2021. "Fiducial Inference on the Right Censored Birnbaum–Saunders Data via Gibbs Sampler," Stats, MDPI, vol. 4(2), pages 1-15, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:38:y:2018:i:12:p:2625-2645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.