IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v34y2014i6p1095-1111.html
   My bibliography  Save this article

Exploring Risk Judgments in a Trade Dispute Using Bayesian Networks

Author

Listed:
  • Bonnie C. Wintle
  • Ann Nicholson

Abstract

Bayesian networks (BNs) are graphical modeling tools that are generally recommended for exploring what‐if scenarios, visualizing systems and problems, and for communication between stakeholders during decision making. In this article, we investigate their potential for exploring different perspectives in trade disputes. To do so, we draw on a specific case study that was arbitrated by the World Trade Organization (WTO): the Australia‐New Zealand apples dispute. The dispute centered on disagreement about judgments contained within Australia's 2006 import risk analysis (IRA). We built a range of BNs of increasing complexity that modeled various approaches to undertaking IRAs, from the basic qualitative and semi‐quantitative risk analyses routinely performed in government agencies, to the more complex quantitative simulation undertaken by Australia in the apples dispute. We found the BNs useful for exploring disagreements under uncertainty because they are probabilistic and transparently represent steps in the analysis. Different scenarios and evidence can easily be entered. Specifically, we explore the sensitivity of the risk output to different judgments (particularly volume of trade). Thus, we explore how BNs could usefully aid WTO dispute settlement. We conclude that BNs are preferable to basic qualitative and semi‐quantitative risk analyses because they offer an accessible interface and are mathematically sound. However, most current BN modeling tools are limited compared with complex simulations, as was used in the 2006 apples IRA. Although complex simulations may be more accurate, they are a black box for stakeholders. BNs have the potential to be a transparent aid to complex decision making, but they are currently computationally limited. Recent technological software developments are promising.

Suggested Citation

  • Bonnie C. Wintle & Ann Nicholson, 2014. "Exploring Risk Judgments in a Trade Dispute Using Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1095-1111, June.
  • Handle: RePEc:wly:riskan:v:34:y:2014:i:6:p:1095-1111
    DOI: 10.1111/risa.12172
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12172
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jones, B. & Jenkinson, I. & Yang, Z. & Wang, J., 2010. "The use of Bayesian network modelling for maintenance planning in a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 267-277.
    2. Bonnie C. Wintle & Belinda Cleeland, 2012. "Interpreting risk in international trade," Journal of Risk Research, Taylor & Francis Journals, vol. 15(3), pages 293-312, March.
    3. Aquaro, V. & Bardoscia, M. & Bellotti, R. & Consiglio, A. & De Carlo, F. & Ferri, G., 2010. "A Bayesian Networks approach to Operational Risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1721-1728.
    4. repec:cup:judgdm:v:5:y:2010:i:1:p:37-53 is not listed on IDEAS
    5. Clémence Sophie Rigaux Ancelet & Frédéric Carlin & Christophe Nguyen‐thé & Isabelle Albert, 2013. "Inferring an Augmented Bayesian Network to Confront a Complex Quantitative Microbial Risk Assessment Model with Durability Studies: Application to Bacillus Cereus on a Courgette Purée Production Chain," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 877-892, May.
    6. Isabelle Albert & Emmanuelle Espié & Henriette de Valk & Jean‐Baptiste Denis, 2011. "A Bayesian Evidence Synthesis for Estimating Campylobacteriosis Prevalence," Risk Analysis, John Wiley & Sons, vol. 31(7), pages 1141-1155, July.
    7. Lin, Shi-Woei & Bier, Vicki M., 2008. "A study of expert overconfidence," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 711-721.
    8. Isabelle Albert & Emmanuel Grenier & Jean‐Baptiste Denis & Judith Rousseau, 2008. "Quantitative Risk Assessment from Farm to Fork and Beyond: A Global Bayesian Approach Concerning Food‐Borne Diseases," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 557-571, April.
    9. McKenzie, Craig R.M. & Liersch, Michael J. & Yaniv, Ilan, 2008. "Overconfidence in interval estimates: What does expertise buy you?," Organizational Behavior and Human Decision Processes, Elsevier, vol. 107(2), pages 179-191, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sulian Wang & Chen Wang, 2021. "Quantile Judgments of Lognormal Losses: An Experimental Investigation," Decision Analysis, INFORMS, vol. 18(1), pages 78-99, March.
    2. Baoping Cai & Yonghong Liu & Zengkai Liu & Xiaojie Tian & Yanzhen Zhang & Renjie Ji, 2013. "Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1293-1311, July.
    3. David R. Mandel & Daniel Irwin, 2021. "Tracking accuracy of strategic intelligence forecasts: Findings from a long‐term Canadian study," Futures & Foresight Science, John Wiley & Sons, vol. 3(3-4), September.
    4. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    5. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    6. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    7. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    8. Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    10. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Uflaz, Esma & Sezer, Sukru Ilke & Tunçel, Ahmet Lutfi & Aydin, Muhammet & Akyuz, Emre & Arslan, Ozcan, 2024. "Quantifying potential cyber-attack risks in maritime transportation under Dempster–Shafer theory FMECA and rule-based Bayesian network modelling," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    13. He, Rui & Zhu, Jingyu & Chen, Guoming & Tian, Zhigang, 2022. "A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Christian P. Robert & Judith Rousseau, 2010. "On Bayesian Data Analysis," Working Papers 2010-31, Center for Research in Economics and Statistics.
    15. Hanea, A.M. & McBride, M.F. & Burgman, M.A. & Wintle, B.C. & Fidler, F. & Flander, L. & Twardy, C.R. & Manning, B. & Mascaro, S., 2017. "I nvestigate D iscuss E stimate A ggregate for structured expert judgement," International Journal of Forecasting, Elsevier, vol. 33(1), pages 267-279.
    16. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    17. James Wang, 2020. "Screening soft information: evidence from loan officers," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1287-1322, December.
    18. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    19. repec:cup:judgdm:v:17:y:2022:i:1:p:91-123 is not listed on IDEAS
    20. Hanea, D.M. & Jagtman, H.M. & van Alphen, L.L.M.M. & Ale, B.J.M., 2010. "Quantitative and qualitative analysis of the expert and non-expert opinion in fire risk in buildings," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 729-741.
    21. Hani Alyami & Paul Tae-Woo Lee & Zaili Yang & Ramin Riahi & Stephen Bonsall & Jin Wang, 2014. "An advanced risk analysis approach for container port safety evaluation," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(7), pages 634-650, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:34:y:2014:i:6:p:1095-1111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.