IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics0951832022003234.html
   My bibliography  Save this article

A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring

Author

Listed:
  • He, Rui
  • Zhu, Jingyu
  • Chen, Guoming
  • Tian, Zhigang

Abstract

Safety is of high societal concern in the petrochemical industry. With advancing digitalization, the techniques of probabilistic risk assessment (PRA), which provide a system-level perspective for industrial risk analysis, have become increasingly dynamic. This paper provides a further advancement in this direction by proposing a risk updating method based on the dynamic Bayesian network (DBN) to incorporate data monitoring into PRA in real-time. We update the probabilistic risk for basic events in Bayesian networks based on their prior probability and the probability of their online monitoring signals exceeding the alarm threshold. The key idea behind this approach is that if the signal of a basic event exceeds the alarm threshold, the corresponding risk should increase. Otherwise, the basic event should have a low risk. The contribution in this paper is twofold. First, residual methods are developed to estimate signal probabilities exceeding abnormal thresholds. Second, a DBN model is proposed to integrate prior risk with data monitoring for risk analysis. The proposed DBN model does not require additional expert knowledge and historical accident data to define the conditional relationship between data monitoring and prior risk. The proposed approach is validated using the RT 580 experimental setup and managed pressure drilling operations.

Suggested Citation

  • He, Rui & Zhu, Jingyu & Chen, Guoming & Tian, Zhigang, 2022. "A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003234
    DOI: 10.1016/j.ress.2022.108700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zywiec, William J. & Mazzuchi, Thomas A. & Sarkani, Shahram, 2021. "Analysis of process criticality accident risk using a metamodel-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Hu, Yunwei & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Guided simulation for dynamic probabilistic risk assessment of complex systems: Concept, method, and application," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Meng, Xiangkun & Li, Xinhong & Wang, Weigang & Song, Guozheng & Chen, Guoming & Zhu, Jingyu, 2021. "A novel methodology to analyze accident path in deepwater drilling operation considering uncertain information," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Parhizkar, Tarannom & Hogenboom, Sandra & Vinnem, Jan Erik & Utne, Ingrid Bouwer, 2020. "Data driven approach to risk management and decision support for dynamic positioning systems," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Jones, B. & Jenkinson, I. & Yang, Z. & Wang, J., 2010. "The use of Bayesian network modelling for maintenance planning in a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 267-277.
    6. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Durga Rao Karanki & Hari Shankar Kushwaha & Ajit Kumar Verma & Srividya Ajit, 2009. "Uncertainty Analysis Based on Probability Bounds (P‐Box) Approach in Probabilistic Safety Assessment," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 662-675, May.
    8. Moradi, Ramin & Groth, Katrina M., 2020. "Modernizing risk assessment: A systematic integration of PRA and PHM techniques," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Islam, Rakibul & Khan, Faisal & Venkatesan, Ramchandran, 2017. "Real time risk analysis of kick detection: Testing and validation," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 25-37.
    10. Shalev, Dan M. & Tiran, Joseph, 2007. "Condition-based fault tree analysis (CBFTA): A new method for improved fault tree analysis (FTA), reliability and safety calculations," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1231-1241.
    11. Hongyang Yu & Faisal Khan & Brian Veitch, 2017. "A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1668-1682, September.
    12. Liu, Zengkai & Ma, Qiang & Cai, Baoping & Shi, Xuewei & Zheng, Chao & Liu, Yonghong, 2022. "Risk coupling analysis of subsea blowout accidents based on dynamic Bayesian network and NK model," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    13. Dimaio, F. & Scapinello, O. & Zio, E. & Ciarapica, C. & Cincotta, S. & Crivellari, A. & Decarli, L. & Larosa, L., 2021. "Accounting for Safety Barriers Degradation in the Risk Assessment of Oil and Gas Systems by Multistate Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2019. "A framework for dynamic risk assessment with condition monitoring data and inspection data," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hunte, Joshua L. & Neil, Martin & Fenton, Norman E., 2024. "A hybrid Bayesian network for medical device risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Liu, Jinbiao & Tan, Lingling & Ma, Yaping, 2024. "An integrated risk assessment method for urban areas due to chemical leakage accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Hai, Nan & Gong, Daqing & Dai, Zixuan, 2024. "Target spectrum-based risk analysis model for utility tunnel O&M in multiple scenarios and its application," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Lewis, Austin D. & Groth, Katrina M., 2023. "A comparison of DBN model performance in SIPPRA health monitoring based on different data stream discretization methods," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zengkai & Ma, Qiang & Cai, Baoping & Shi, Xuewei & Zheng, Chao & Liu, Yonghong, 2022. "Risk coupling analysis of subsea blowout accidents based on dynamic Bayesian network and NK model," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Wang, Jian & Gao, Shibin & Yu, Long & Ma, Chaoqun & Zhang, Dongkai & Kou, Lei, 2023. "A data-driven integrated framework for predictive probabilistic risk analytics of overhead contact lines based on dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Ramin Moradi & Andrés Ruiz-Tagle Palazuelos & Enrique Lopez Droguett & Katrina M Groth, 2023. "Toward a framework for risk monitoring of complex engineering systems with online operational data: A deep learning-based solution," Journal of Risk and Reliability, , vol. 237(5), pages 910-921, October.
    4. Qiu, Na & Liu, Xiuquan & Li, Yanwei & Hu, Pengji & Chang, Yuanjiang & Chen, Guoming & Meng, Huixing, 2024. "Dynamic catastrophe analysis of deepwater mooring platform/riser/wellhead coupled system under ISW," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    5. Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. BahooToroody, Ahmad & De Carlo, Filippo & Paltrinieri, Nicola & Tucci, Mario & Van Gelder, P.H.A.J.M., 2020. "Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    7. Guo, Jian & Ma, Kaijiang, 2024. "Risk analysis for hazardous chemical vehicle-bridge transportation system: A dynamic Bayesian network model incorporating vehicle dynamics," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Alsulieman, Abdullah & Ge, Xihe & Zeng, Zhiguo & Butenko, Sergiy & Khan, Faisal & El-Halwagi, Mahmoud, 2024. "Dynamic risk analysis of evolving scenarios in oil and gas separator," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Liu, Xuan & Meng, Huixing & An, Xu & Xing, Jinduo, 2024. "Integration of functional resonance analysis method and reinforcement learning for updating and optimizing emergency procedures in variable environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Deng, Wanyi & Ma, Xiaoxue & Qiao, Weiliang, 2024. "A novel methodology to quantify the impact of safety barriers on maritime operational risk based on a probabilistic network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Wang, Chenyushu & Cai, Baoping & Shao, Xiaoyan & Zhao, Liqian & Sui, Zhongfei & Liu, Keyang & Khan, Javed Akbar & Gao, Lei, 2023. "Dynamic risk assessment methodology of operation process for deepwater oil and gas equipment," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    14. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Zhang, Hengqi & Geng, Hua & Zeng, Huarong & Jiang, Li, 2023. "Dynamic risk evaluation and control of electrical personal accidents," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    19. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    20. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.