IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v218y2022ipas0951832021006566.html
   My bibliography  Save this article

An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks

Author

Listed:
  • Hassan, Shamsu
  • Wang, Jin
  • Kontovas, Christos
  • Bashir, Musa

Abstract

The increased incidents of pipeline failures and resultant consequences of fires, explosions and environmental pollution motivate stakeholders to find solutions in dealing with these emerging threats as part of process safety management. This is further compounded by the absence of reliable failure data, particularly in developing countries. To address such challenges, a Bayesian Network (BN) model has been developed. The aim of the model is to highlight the contributing failure factors to the identified pipeline hazards and their interrelationships. The BN approach is appropriate for this work because it accommodates data uncertainty, or the lack of data, and can integrate the expert's knowledge. The model is especially good at updating the results whenever new data becomes available.

Suggested Citation

  • Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
  • Handle: RePEc:eee:reensy:v:218:y:2022:i:pa:s0951832021006566
    DOI: 10.1016/j.ress.2021.108171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021006566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Zhou, Xingyuan & van Gelder, P.H.A.J.M. & Liang, Yongtu & Zhang, Haoran, 2020. "An integrated methodology for the supply reliability analysis of multi-product pipeline systems under pumps failure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Jones, B. & Jenkinson, I. & Yang, Z. & Wang, J., 2010. "The use of Bayesian network modelling for maintenance planning in a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 267-277.
    4. Zhang, Y. & Weng, W.G., 2020. "Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. Liu, Cuiwei & Wang, Yazhen & Li, Xinhong & Li, Yuxing & Khan, Faisal & Cai, Baoping, 2021. "Quantitative assessment of leakage orifices within gas pipelines using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Koczkodaj, W.W. & Szybowski, J., 2015. "Pairwise comparisons simplified," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 387-394.
    7. Adumene, Sidum & Khan, Faisal & Adedigba, Sunday & Zendehboudi, Sohrab & Shiri, Hodjat, 2021. "Dynamic risk analysis of marine and offshore systems suffering microbial induced stochastic degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Kim, Kyeongsu & Lee, Gunhak & Park, Keonhee & Park, Seongho & Lee, Won Bo, 2021. "Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Xiang, W. & Zhou, W., 2021. "Bayesian network model for predicting probability of third-party damage to underground pipelines and learning model parameters from incomplete datasets," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Yang, Yongsheng & Khan, Faisal & Thodi, Premkumar & Abbassi, Rouzbeh, 2017. "Corrosion induced failure analysis of subsea pipelines," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 214-222.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kahia, Montassar & Moulahi, Tarek & Mahfoudhi, Sami & Boubaker, Sabri & Omri, Anis, 2022. "A machine learning process for examining the linkage among disaggregated energy consumption, economic growth, and environmental degradation," Resources Policy, Elsevier, vol. 79(C).
    2. Elidolu, Gizem & Sezer, Sukru Ilke & Akyuz, Emre & Arslan, Ozcan & Arslanoglu, Yasin, 2023. "Operational risk assessment of ballasting and de-ballasting on-board tanker ship under FMECA extended Evidential Reasoning (ER) and Rule-based Bayesian Network (RBN) approach," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Bhattacharjee, Pushparenu & Dey, Vidyut & Mandal, U.K. & Paul, Susmita, 2022. "Quantitative risk assessment of submersible pump components using Interval number-based Multinomial Logistic Regression(MLR) model," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Dao, Uyen & Sajid, Zaman & Khan, Faisal & Zhang, Yahui, 2023. "Dynamic Bayesian network model to study under-deposit corrosion," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Li, Pengyu & Wang, Xiufang & Jiang, Chunlei & Bi, Hongbo & Liu, Yongzhi & Yan, Wendi & Zhang, Cong & Dong, Taiji & Sun, Yu, 2024. "Advanced transformer model for simultaneous leakage aperture recognition and localization in gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Dao, Uyen & Sajid, Zaman & Khan, Faisal & Zhang, Yahui & Tran, Trung, 2023. "Modeling and analysis of internal corrosion induced failure of oil and gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zio, Enrico & Yuan, Chengwei & Wang, Taorui & Jiang, Jianjun, 2022. "A Bayesian belief network framework for nuclear power plant human reliability analysis accounting for dependencies among performance shaping factors," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Jian & Ma, Kaijiang, 2024. "Risk analysis for hazardous chemical vehicle-bridge transportation system: A dynamic Bayesian network model incorporating vehicle dynamics," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Amaya-Gómez, Rafael & Schoefs, Franck & Sánchez-Silva, Mauricio & Muñoz, Felipe & Bastidas-Arteaga, Emilio, 2022. "Matching of corroded defects in onshore pipelines based on In-Line Inspections and Voronoi partitions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Dao, Uyen & Sajid, Zaman & Khan, Faisal & Zhang, Yahui, 2023. "Dynamic Bayesian network model to study under-deposit corrosion," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Li, Xinhong & Jia, Ruichao & Zhang, Renren & Yang, Shangyu & Chen, Guoming, 2022. "A KPCA-BRANN based data-driven approach to model corrosion degradation of subsea oil pipelines," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    7. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. Bibartiu, Otto & Dürr, Frank & Rothermel, Kurt & Ottenwälder, Beate & Grau, Andreas, 2021. "Scalable k-out-of-n models for dependability analysis with Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    9. Wang, Chang & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Zhu, Zhu & Liao, Qi, 2022. "Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines," Energy, Elsevier, vol. 261(PB).
    10. Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Ruiz-Tagle, Andres & Lewis, Austin D. & Schell, Colin A. & Lever, Ernest & Groth, Katrina M., 2022. "BaNTERA: A Bayesian Network for Third-Party Excavation Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    13. Xiang, W. & Zhou, W., 2021. "Bayesian network model for predicting probability of third-party damage to underground pipelines and learning model parameters from incomplete datasets," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    15. Chen, Yinuo & Tian, Zhigang & He, Rui & Wang, Yifei & Xie, Shuyi, 2023. "Discovery of potential risks for the gas transmission station using monitoring data and the OOBN method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    16. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Aalirezaei, Armin & Kabir, Dr. Golam & Khan, Md Saiful Arif, 2023. "Dynamic predictive analysis of the consequences of gas pipeline failures using a Bayesian network," International Journal of Critical Infrastructure Protection, Elsevier, vol. 43(C).
    18. Hong, Bingyuan & Shao, Bowen & Guo, Jian & Fu, Jianzhong & Li, Cuicui & Zhu, Baikang, 2023. "Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines," Applied Energy, Elsevier, vol. 333(C).
    19. Cai, Baoping & Liu, Yonghong & Liu, Zengkai & Tian, Xiaojie & Dong, Xin & Yu, Shilin, 2012. "Using Bayesian networks in reliability evaluation for subsea blowout preventer control system," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 32-41.
    20. Na, Kyumin & Yoon, Heonjun & Kim, Jaedong & Kim, Sungjong & Youn, Byeng D., 2023. "PERL: Probabilistic energy-ratio-based localization for boiler tube leaks using descriptors of acoustic emission signals," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:218:y:2022:i:pa:s0951832021006566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.