IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v228y2014i2p176-188.html
   My bibliography  Save this article

An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case

Author

Listed:
  • Di Zhang
  • Xinping Yan
  • Zaili Yang
  • Jin Wang

Abstract

Inland waterway transportation is often claimed to be reliable, congestion-free, economic and environmentally friendly. However, inland waterway transport accidents such as groundings cause congestions that can easily reduce the navigational capability of the waterways with confined channel dimensions particularly during a dry season. An accident data–based approach is presented in this article to assess the congestion risk of inland waterways using a case of the Yangtze River. Through a correlation analysis of historical failure data, the safety critical factors of congestion are first identified and used to establish a Bayesian network for the analysis and prediction of the congestion risk in the Yangtze River. A Congestion Risk Index is then developed by taking into account both probability and consequence of congestion risks in order to evaluate the impacts of various safety critical factors (i.e. Visibility, Gross Tonnage, etc.) on the congestion of the Yangtze River. The outcomes of this work can be used to effectively diagnose and predict the congestion risks of inland waterways in general and the Yangtze River in specific.

Suggested Citation

  • Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
  • Handle: RePEc:sae:risrel:v:228:y:2014:i:2:p:176-188
    DOI: 10.1177/1748006X13508107
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X13508107
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X13508107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William W. Wilson & Bruce L. Dahl & Richard D. Taylor, 2011. "Impacts of Lock Capacity Expansion on Delay Costs for Grain Shipped on the Mississippi River," Journal of Transport Economics and Policy, University of Bath, vol. 45(1), pages 129-154, January.
    2. L D Smith & D C Sweeney & J F Campbell, 2009. "Simulation of alternative approaches to relieving congestion at locks in a river transportion system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 519-533, April.
    3. Lei Fan & William W. Wilson, 2012. "Impacts of Congestion and Stochastic Variables on the Network for US Container Imports," Journal of Transport Economics and Policy, University of Bath, vol. 46(3), pages 381-398, September.
    4. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    5. Jones, B. & Jenkinson, I. & Yang, Z. & Wang, J., 2010. "The use of Bayesian network modelling for maintenance planning in a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 267-277.
    6. Zhang, D. & Yan, X.P. & Yang, Z.L. & Wall, A. & Wang, J., 2013. "Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 93-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daozheng Huang & Gang Zhao, 2019. "A Shared Container Transportation Mode in the Yangtze River," Sustainability, MDPI, vol. 11(10), pages 1-12, May.
    2. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    3. Jiang, Yonglei & Lu, Jing & Cai, Yutong & Zeng, Qingcheng, 2018. "Analysis of the impacts of different modes of governance on inland waterway transport development on the Pearl River: The Yangtze River Mode vs. the Pearl River Mode," Journal of Transport Geography, Elsevier, vol. 71(C), pages 235-252.
    4. Gino J. Lim & Jaeyoung Cho & Selim Bora & Taofeek Biobaku & Hamid Parsaei, 2018. "Models and computational algorithms for maritime risk analysis: a review," Annals of Operations Research, Springer, vol. 271(2), pages 765-786, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    2. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    4. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Lian Zhu & Linjun Lu & Wenying Zhang & Yurou Zhao & Meining Song, 2019. "Analysis of Accident Severity for Curved Roadways Based on Bayesian Networks," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    6. Chen, Xiyuan & Ma, Xiaoping & Jia, Limin & Zhang, Zhipeng & Chen, Fei & Wang, Ruojin, 2024. "Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    8. T. Edward Yu & Bijay P. Sharma & Burton C. English, 2019. "Investigating Lock Delay on the Upper Mississippi River: a Spatial Panel Analysis," Networks and Spatial Economics, Springer, vol. 19(1), pages 275-291, March.
    9. Sahu, Atma Ram & Palei, Sanjay Kumar, 2022. "Fault analysis of dragline subsystem using Bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    11. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    13. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    14. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    15. Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    16. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    17. Zhou, Yusheng & Li, Xue & Yuen, Kum Fai, 2022. "Holistic risk assessment of container shipping service based on Bayesian Network Modelling," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    18. Guizhen Zhang & Vinh V. Thai & Adrian Wing‐Keung Law & Kum Fai Yuen & Hui Shan Loh & Qingji Zhou, 2020. "Quantitative Risk Assessment of Seafarers’ Nonfatal Injuries Due to Occupational Accidents Based on Bayesian Network Modeling," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 8-23, January.
    19. Hani Alyami & Paul Tae-Woo Lee & Zaili Yang & Ramin Riahi & Stephen Bonsall & Jin Wang, 2014. "An advanced risk analysis approach for container port safety evaluation," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(7), pages 634-650, December.
    20. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:228:y:2014:i:2:p:176-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.