IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i2p77-86.html
   My bibliography  Save this article

Methodology for the use of experimental data to enhance model output uncertainty assessment in thermal hydraulics codes

Author

Listed:
  • Pourgol-Mohamad, Mohammad
  • Mosleh, Ali
  • Modarres, Mohammad

Abstract

Uncertainty analysis methodology in complex system models requires a comprehensive treatment of many different types and sources of uncertainties. This paper develops and demonstrates the application of a methodology for updating the results of uncertainty quantification of TH system codes when additional data are available from tests and experiments that are fully or partially applicable, or when they can be paired with corresponding code calculations, as well as cases where such pairing is not possible. The techniques discussed in this paper are a part of a more comprehensive methodology (IMTHUA) for the integrated assessment of TH system code uncertainties, covering both the model (structural) and parameter uncertainties. The Bayesian updating techniques presented enable one to further refine and adjust the uncertainty distribution that is obtained by propagation of various inputs and sub-model uncertainty contributors to TH code prediction. This additional refinement accounts for the residual uncertainties (model and parameter) that are not explicitly accounted for, including those resulting from missed/screened out models and known sources of uncertainties that cannot be easily and explicitly accounted for. Data from LOFT facility LBLOCA is used to demonstrate how the proposed Bayesian uncertainty adjustment methodology can be applied.

Suggested Citation

  • Pourgol-Mohamad, Mohammad & Mosleh, Ali & Modarres, Mohammad, 2010. "Methodology for the use of experimental data to enhance model output uncertainty assessment in thermal hydraulics codes," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 77-86.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:2:p:77-86
    DOI: 10.1016/j.ress.2009.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009002087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martorell, S. & Sánchez-Sáez, F. & Villanueva, J.F. & Carlos, S., 2017. "An extended BEPU approach integrating probabilistic assumptions on the availability of safety systems in deterministic safety analyses," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 474-483.
    2. Arezoo Amirpourabasi & Mohammad Pourgol-Mohammad & Hanieh Niroomand-Oscuii, 2017. "Reliability Evaluation for Biomedical Systems: Case Study of a Biological Cell Freezing," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 6(3), pages 45-52, July.
    3. Kabir, Elnaz & Guikema, Seth & Kane, Brian, 2018. "Statistical modeling of tree failures during storms," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 68-79.
    4. N. Meghdadi & H. Niroomand-Oscuii & M. Soltani & F. Ghalichi & M. Pourgolmohammad, 2017. "Brain tumor growth simulation: model validation through uncertainty quantification," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 655-662, September.
    5. Matteo Vagnoli & Francesco Di Maio & Enrico Zio, 2018. "Ensembles of climate change models for risk assessment of nuclear power plants," Journal of Risk and Reliability, , vol. 232(2), pages 185-200, April.
    6. Enrique López Droguett & Ali Mosleh, 2014. "Bayesian Treatment of Model Uncertainty for Partially Applicable Models," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 252-270, February.
    7. Francesco Di Maio & Nicola Pedroni & Barnabás Tóth & Luciano Burgazzi & Enrico Zio, 2021. "Reliability Assessment of Passive Safety Systems for Nuclear Energy Applications: State-of-the-Art and Open Issues," Energies, MDPI, vol. 14(15), pages 1-17, August.
    8. Hoseyni, Seyed Mohsen & Pourgol-Mohammad, Mohammad & Tehranifard, Ali Abbaspour & Yousefpour, Faramarz, 2014. "A systematic framework for effective uncertainty assessment of severe accident calculations; Hybrid qualitative and quantitative methodology," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 22-35.
    9. Martorell, S. & Martorell, P. & Martón, I. & Sánchez, A.I. & Carlos, S., 2017. "An approach to address probabilistic assumptions on the availability of safety systems for deterministic safety analysis," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 136-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:2:p:77-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.