IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v79y2009i7p2036-2050.html
   My bibliography  Save this article

Estimation of extra risk and benchmark dose in dose–response models

Author

Listed:
  • Gupta, Ramesh C.
  • Wang, Na

Abstract

An important goal in quantitative risk/safety analysis of chemical toxins or pharmaceutical agents is determination of toxic risk posed by exposure to the agent.

Suggested Citation

  • Gupta, Ramesh C. & Wang, Na, 2009. "Estimation of extra risk and benchmark dose in dose–response models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2036-2050.
  • Handle: RePEc:eee:matcom:v:79:y:2009:i:7:p:2036-2050
    DOI: 10.1016/j.matcom.2008.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475408003194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2008.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniela K. Nitcheva & Walter W. Piegorsch & R. Webster West & Ralph L. Kodell, 2005. "Multiplicity-Adjusted Inferences in Risk Assessment: Benchmark Analysis with Quantal Response Data," Biometrics, The International Biometric Society, vol. 61(1), pages 277-286, March.
    2. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    3. Obaid M. Al-Saidy & Walter W. Piegorsch & R. Webster West & Daniela K. Nitcheva, 2003. "Confidence Bands for Low-Dose Risk Estimation with Quantal Response Data," Biometrics, The International Biometric Society, vol. 59(4), pages 1056-1062, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter W. Piegorsch & R. Webster West, 2005. "Benchmark Analysis: Shopping with Proper Confidence," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 913-920, August.
    2. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    3. Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Daniela K. Nitcheva & Walter W. Piegorsch & R. Webster West & Ralph L. Kodell, 2005. "Multiplicity-Adjusted Inferences in Risk Assessment: Benchmark Analysis with Quantal Response Data," Biometrics, The International Biometric Society, vol. 61(1), pages 277-286, March.
    5. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    6. Christopher Withers & Saralees Nadarajah, 2012. "Maximum modulus confidence bands," Statistical Papers, Springer, vol. 53(4), pages 811-819, November.
    7. Alfred K. Mbah & Ibrahim Hamisu & Eknath Naik & Hamisu M. Salihu, 2014. "Estimating Benchmark Exposure for Air Particulate Matter Using Latent Class Models," Risk Analysis, John Wiley & Sons, vol. 34(11), pages 2053-2062, November.
    8. Signe M. Jensen & Christian Ritz, 2015. "Simultaneous Inference for Model Averaging of Derived Parameters," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 68-76, January.
    9. Walter W. Piegorsch & Susan L. Cutter & Frank Hardisty, 2007. "Benchmark Analysis for Quantifying Urban Vulnerability to Terrorist Incidents," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1411-1425, December.
    10. Roland C. Deutsch & Walter W. Piegorsch, 2012. "Benchmark Dose Profiles for Joint-Action Quantal Data in Quantitative Risk Assessment," Biometrics, The International Biometric Society, vol. 68(4), pages 1313-1322, December.
    11. Dette, Holger & Pepelyshev, Andrey & Shpilev, Piter & Wong, Weng Kee, 2009. "Optimal designs for estimating critical effective dose under model uncertainty in a dose response study," Technical Reports 2009,07, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Xiaowei Ren & Jielai Xia, 2019. "An algorithm for computing profile likelihood based pointwise confidence intervals for nonlinear dose-response models," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-10, January.
    13. Esben Budtz‐Jørgensen & David Bellinger & Bruce Lanphear & Philippe Grandjean & on behalf of the International Pooled Lead Study Investigators, 2013. "An International Pooled Analysis for Obtaining a Benchmark Dose for Environmental Lead Exposure in Children," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 450-461, March.
    14. Hilko Van Der Voet & Wout Slob, 2007. "Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 351-371, April.
    15. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    16. Sanyu Zhou, 2017. "One-sided hyperbolic simultaneous confidence bands for multiple and polynomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 187-200, February.
    17. Sanyu Zhou & Defa Wang & Jingjing Zhu, 2020. "Construction of simultaneous confidence bands for a percentile hyper-plane with predictor variables constrained in an ellipsoidal region," Statistical Papers, Springer, vol. 61(3), pages 1335-1346, June.
    18. Yiliang Zhu & Tao Wang & Jenny Z.H. Jelsovsky, 2007. "Bootstrap Estimation of Benchmark Doses and Confidence Limits with Clustered Quantal Data," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 447-465, April.
    19. Liu, W. & Hayter, A.J. & Piegorsch, W.W. & Ah-Kine, P., 2009. "Comparison of hyperbolic and constant width simultaneous confidence bands in multiple linear regression under MVCS criterion," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1432-1439, August.
    20. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:79:y:2009:i:7:p:2036-2050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.