IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v27y2007i2p447-465.html
   My bibliography  Save this article

Bootstrap Estimation of Benchmark Doses and Confidence Limits with Clustered Quantal Data

Author

Listed:
  • Yiliang Zhu
  • Tao Wang
  • Jenny Z.H. Jelsovsky

Abstract

The benchmark dose (BMD) is an exposure level that would induce a small risk increase (BMR level) above the background. The BMD approach to deriving a reference dose for risk assessment of noncancer effects is advantageous in that the estimate of BMD is not restricted to experimental doses and utilizes most available dose‐response information. To quantify statistical uncertainty of a BMD estimate, we often calculate and report its lower confidence limit (i.e., BMDL), and may even consider it as a more conservative alternative to BMD itself. Computation of BMDL may involve normal confidence limits to BMD in conjunction with the delta method. Therefore, factors, such as small sample size and nonlinearity in model parameters, can affect the performance of the delta method BMDL, and alternative methods are useful. In this article, we propose a bootstrap method to estimate BMDL utilizing a scheme that consists of a resampling of residuals after model fitting and a one‐step formula for parameter estimation. We illustrate the method with clustered binary data from developmental toxicity experiments. Our analysis shows that with moderately elevated dose‐response data, the distribution of BMD estimator tends to be left‐skewed and bootstrap BMDL s are smaller than the delta method BMDL s on average, hence quantifying risk more conservatively. Statistically, the bootstrap BMDL quantifies the uncertainty of the true BMD more honestly than the delta method BMDL as its coverage probability is closer to the nominal level than that of delta method BMDL. We find that BMD and BMDL estimates are generally insensitive to model choices provided that the models fit the data comparably well near the region of BMD. Our analysis also suggests that, in the presence of a significant and moderately strong dose‐response relationship, the developmental toxicity experiments under the standard protocol support dose‐response assessment at 5% BMR for BMD and 95% confidence level for BMDL.

Suggested Citation

  • Yiliang Zhu & Tao Wang & Jenny Z.H. Jelsovsky, 2007. "Bootstrap Estimation of Benchmark Doses and Confidence Limits with Clustered Quantal Data," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 447-465, April.
  • Handle: RePEc:wly:riskan:v:27:y:2007:i:2:p:447-465
    DOI: 10.1111/j.1539-6924.2007.00897.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2007.00897.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2007.00897.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    2. A. John Bailer & Randall J. Smith, 1994. "Estimating Upper Confidence Limits for Extra Risk in Quantal Multistage Models," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 1001-1010, December.
    3. Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.
    4. Moulton, Lawrence H. & Zeger, Scott L., 1991. "Bootstrapping generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 53-63, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    2. Alfred K. Mbah & Ibrahim Hamisu & Eknath Naik & Hamisu M. Salihu, 2014. "Estimating Benchmark Exposure for Air Particulate Matter Using Latent Class Models," Risk Analysis, John Wiley & Sons, vol. 34(11), pages 2053-2062, November.
    3. Soisungwan Satarug & David A. Vesey & Glenda C. Gobe & Aleksandra Buha Đorđević, 2022. "The Validity of Benchmark Dose Limit Analysis for Estimating Permissible Accumulation of Cadmium," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    4. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esben Budtz‐Jørgensen & David Bellinger & Bruce Lanphear & Philippe Grandjean & on behalf of the International Pooled Lead Study Investigators, 2013. "An International Pooled Analysis for Obtaining a Benchmark Dose for Environmental Lead Exposure in Children," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 450-461, March.
    2. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    3. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    4. Walter W. Piegorsch & R. Webster West, 2005. "Benchmark Analysis: Shopping with Proper Confidence," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 913-920, August.
    5. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    6. Alfred K. Mbah & Ibrahim Hamisu & Eknath Naik & Hamisu M. Salihu, 2014. "Estimating Benchmark Exposure for Air Particulate Matter Using Latent Class Models," Risk Analysis, John Wiley & Sons, vol. 34(11), pages 2053-2062, November.
    7. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    8. Hilko Van Der Voet & Wout Slob, 2007. "Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 351-371, April.
    9. Yasushi Suwazono & Mirei Dochi & Etsuko Kobayashi & Mitsuhiro Oishi & Yasushi Okubo & Kumihiko Tanaka & Kouichi Sakata, 2008. "Benchmark Duration of Work Hours for Development of Fatigue Symptoms in Japanese Workers with Adjustment for Job‐Related Stress," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1689-1698, December.
    10. Bastien, Philippe & Vinzi, Vincenzo Esposito & Tenenhaus, Michel, 2005. "PLS generalised linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 17-46, January.
    11. Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Matthew W. Wheeler & A. John Bailer & Tarah Cole & Robert M. Park & Kan Shao, 2017. "Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2107-2118, November.
    13. Daniela K. Nitcheva & Walter W. Piegorsch & R. Webster West & Ralph L. Kodell, 2005. "Multiplicity-Adjusted Inferences in Risk Assessment: Benchmark Analysis with Quantal Response Data," Biometrics, The International Biometric Society, vol. 61(1), pages 277-286, March.
    14. Zi‐Fan Yu & Paul J. Catzlano, 2008. "A Simulation Study of Quantitative Risk Assessment for Bivariate Continuous Outcomes," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1415-1430, October.
    15. Gupta, Ramesh C. & Wang, Na, 2009. "Estimation of extra risk and benchmark dose in dose–response models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2036-2050.
    16. Kanae Karita & Eiji Yano & Miwako Dakeishi & Toyoto Iwata & Katsuyuki Murata, 2005. "Benchmark Dose of Lead Inducing Anemia at the Workplace," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 957-962, August.
    17. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    18. Claeskens, Gerda & Aerts, Marc & Molenberghs, Geert, 2003. "A quadratic bootstrap method and improved estimation in logistic regression," Statistics & Probability Letters, Elsevier, vol. 61(4), pages 383-394, February.
    19. Mathur, Maya B & VanderWeele, Tyler, 2018. "Statistical methods for evidence synthesis," Thesis Commons kd6ja, Center for Open Science.
    20. Signe M. Jensen & Christian Ritz, 2015. "Simultaneous Inference for Model Averaging of Derived Parameters," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 68-76, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:27:y:2007:i:2:p:447-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.