IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3713-d1530253.html
   My bibliography  Save this article

Enhanced Carbon Price Forecasting Using Extended Sliding Window Decomposition with LSTM and SVR

Author

Listed:
  • Xiangjun Cai

    (School of Computer Science and Engineering, Macau University of Science and Technology, Macau 999078, China)

  • Dagang Li

    (School of Computer Science and Engineering, Macau University of Science and Technology, Macau 999078, China
    Zhuhai-M.U.S.T. Science and Technology Research Institute, Zhuhai 519031, China)

  • Li Feng

    (School of Computer Science and Engineering, Macau University of Science and Technology, Macau 999078, China)

Abstract

Accurately forecasting carbon prices plays a vital role in shaping environmental policies, guiding investment strategies, and accelerating the development of low-carbon technologies. However, traditional forecasting models often face challenges related to information leakage and boundary effects. This study proposes a novel extended sliding window decomposition (ESWD) mechanism to prevent information leakage and mitigate boundary effects, thereby enhancing decomposition quality. Additionally, a fully data-driven multivariate empirical mode decomposition (MEMD) technique is incorporated to further improve the model’s capabilities. Partial decomposition operations, combined with high-resolution and full-utilization strategies, ensure mode consistency. An empirical analysis of China’s largest carbon market, using eight key indicators from energy, macroeconomics, international markets, and climate fields, validates the proposed model’s effectiveness. Compared to traditional LSTM and SVR models, the hybrid model achieves performance improvements of 66.6% and 23.5% in RMSE for closing price prediction, and 73.8% and 10.8% for opening price prediction, respectively. Further integration of LSTM and SVR strategies enhances RMSE performance by an additional 82.7% and 8.3% for closing prices, and 30.4% and 4.5% for opening prices. The extended window setup (EW10) yields further gains, improving RMSE, MSE, and MAE by 11.5%, 35.4%, and 23.7% for closing prices, and 4.5%, 8.4%, and 4.2% for opening prices. These results underscore the significant advantages of the proposed model in enhancing carbon price prediction accuracy and trend prediction capabilities.

Suggested Citation

  • Xiangjun Cai & Dagang Li & Li Feng, 2024. "Enhanced Carbon Price Forecasting Using Extended Sliding Window Decomposition with LSTM and SVR," Mathematics, MDPI, vol. 12(23), pages 1-21, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3713-:d:1530253
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    2. Boyce, James K., 2018. "Carbon Pricing: Effectiveness and Equity," Ecological Economics, Elsevier, vol. 150(C), pages 52-61.
    3. Ana Lazcano & Pedro Javier Herrera & Manuel Monge, 2023. "A Combined Model Based on Recurrent Neural Networks and Graph Convolutional Networks for Financial Time Series Forecasting," Mathematics, MDPI, vol. 11(1), pages 1-21, January.
    4. Bangzhu Zhu & Ping Wang & Julien Chevallier & Yi‐ming Wei & Rui Xie, 2018. "Enriching the VaR framework to EEMD with an application to the European carbon market," Post-Print halshs-04250164, HAL.
    5. Yu, Lean & Ma, Yueming & Ma, Mengyao, 2021. "An effective rolling decomposition-ensemble model for gasoline consumption forecasting," Energy, Elsevier, vol. 222(C).
    6. Bangzhu Zhu & Ping Wang & Julien Chevallier & Yi‐Ming Wei & Rui Xie, 2018. "Enriching the VaR framework to EEMD with an application to the European carbon market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 23(3), pages 315-328, July.
    7. Wang, Jujie & Cui, Quan & He, Maolin, 2022. "Hybrid intelligent framework for carbon price prediction using improved variational mode decomposition and optimal extreme learning machine," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    8. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    10. Paolella, Marc S. & Taschini, Luca, 2008. "An econometric analysis of emission allowance prices," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2022-2032, October.
    11. Zhu, Bangzhu & Yuan, Lili & Ye, Shunxin, 2019. "Examining the multi-timescales of European carbon market with grey relational analysis and empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 392-399.
    12. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
    13. Michael Wara, 2007. "Is the global carbon market working?," Nature, Nature, vol. 445(7128), pages 595-596, February.
    14. Easwaran Narassimhan & Kelly S. Gallagher & Stefan Koester & Julio Rivera Alejo, 2018. "Carbon pricing in practice: a review of existing emissions trading systems," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 967-991, September.
    15. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
    2. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    3. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    4. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    5. Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
    6. Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
    7. Yingjie Zhu & Yongfa Chen & Qiuling Hua & Jie Wang & Yinghui Guo & Zhijuan Li & Jiageng Ma & Qi Wei, 2024. "A Hybrid Model for Carbon Price Forecasting Based on Improved Feature Extraction and Non-Linear Integration," Mathematics, MDPI, vol. 12(10), pages 1-26, May.
    8. Jujie Wang & Zhenzhen Zhuang, 2023. "A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6225-6247, July.
    9. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
    10. Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    11. Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
    12. Shao, Liuguo & Zhang, Hua, 2020. "The impact of oil price on the clean energy metal prices: A multi-scale perspective," Resources Policy, Elsevier, vol. 68(C).
    13. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
    14. Ma, Yixiang & Yu, Lean & Zhang, Guoxing, 2022. "Short-term wind power forecasting with an intermittency-trait-driven methodology," Renewable Energy, Elsevier, vol. 198(C), pages 872-883.
    15. Qingjie Zhou & Panpan Zhu & Yinpeng Zhang, 2023. "Contagion Spillover from Bitcoin to Carbon Futures Pricing: Perspective from Investor Attention," Energies, MDPI, vol. 16(2), pages 1-22, January.
    16. Yan, Kai & Zhang, Wei & Shen, Dehua, 2020. "Stylized facts of the carbon emission market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    17. Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
    18. Na Fu & Liyan Geng & Junhai Ma & Xue Ding, 2023. "Price, Complexity, and Mathematical Model," Mathematics, MDPI, vol. 11(13), pages 1-30, June.
    19. Gulay, Emrah & Sen, Mustafa & Akgun, Omer Burak, 2024. "Forecasting electricity production from various energy sources in Türkiye: A predictive analysis of time series, deep learning, and hybrid models," Energy, Elsevier, vol. 286(C).
    20. Burke, Joshua & Gambhir, Ajay, 2022. "Policy incentives for greenhouse gas removal techniques: the risks of premature inclusion in carbon markets and the need for a multi-pronged policy framework," LSE Research Online Documents on Economics 115010, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3713-:d:1530253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.