Forecasting energy spot prices: A multiscale clustering recognition approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.resourpol.2023.103320
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
- Jiang, Ping & Li, Ranran & Liu, Ningning & Gao, Yuyang, 2020. "A novel composite electricity demand forecasting framework by data processing and optimized support vector machine," Applied Energy, Elsevier, vol. 260(C).
- Jorge Belaire-Franch & Kwaku Opong, 2005. "A Variance Ratio Test of the Behaviour of Some FTSE Equity Indices Using Ranks and Signs," Review of Quantitative Finance and Accounting, Springer, vol. 24(1), pages 93-107, January.
- Drachal, Krzysztof, 2021. "Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures," Energy Economics, Elsevier, vol. 99(C).
- Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
- Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
- Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
- Li, Fengyun & Zheng, Haofeng & Li, Xingmei & Yang, Fei, 2021. "Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model," Applied Energy, Elsevier, vol. 303(C).
- Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
- Zhang, Hong & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam & Pradhan, Biswajeet, 2021. "Forecasting monthly copper price: A comparative study of various machine learning-based methods," Resources Policy, Elsevier, vol. 73(C).
- Crespo Cuaresma, Jesús & Hlouskova, Jaroslava & Kossmeier, Stephan & Obersteiner, Michael, 2004. "Forecasting electricity spot-prices using linear univariate time-series models," Applied Energy, Elsevier, vol. 77(1), pages 87-106, January.
- Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
- Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
- Wang, Jue & Wang, Zhen & Li, Xiang & Zhou, Hao, 2022. "Artificial bee colony-based combination approach to forecasting agricultural commodity prices," International Journal of Forecasting, Elsevier, vol. 38(1), pages 21-34.
- Theodore Syriopoulos & Michael Tsatsaronis & Ioannis Karamanos, 2021. "Support Vector Machine Algorithms: An Application to Ship Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 55-87, January.
- Wu, Siping & Xia, Guilin & Liu, Lang, 2023. "A novel decomposition integration model for power coal price forecasting," Resources Policy, Elsevier, vol. 80(C).
- Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2022. "Gold price forecasting using multivariate stochastic model," Resources Policy, Elsevier, vol. 76(C).
- Chen, Yanhui & He, Kaijian & Zhang, Chuan, 2016. "A novel grey wave forecasting method for predicting metal prices," Resources Policy, Elsevier, vol. 49(C), pages 323-331.
- Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
- Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Emmanouil Sofianos & Emmanouil Zaganidis & Theophilos Papadimitriou & Periklis Gogas, 2024. "Forecasting East and West Coast Gasoline Prices with Tree-Based Machine Learning Algorithms," Energies, MDPI, vol. 17(6), pages 1-14, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
- Nabavi, Zohre & Mirzehi, Mohammad & Dehghani, Hesam, 2024. "Reliable novel hybrid extreme gradient boosting for forecasting copper prices using meta-heuristic algorithms: A thirty-year analysis," Resources Policy, Elsevier, vol. 90(C).
- Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
- Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
- Li, Ning & Li, Jiaojiao & Wang, Qizhou & Yan, Dairong & Wang, Liguan & Jia, Mingtao, 2024. "A novel copper price forecasting ensemble method using adversarial interpretive structural model and sparrow search algorithm," Resources Policy, Elsevier, vol. 91(C).
- Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
- Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
- Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
- Guan, Keqin & Gong, Xu, 2023. "A new hybrid deep learning model for monthly oil prices forecasting," Energy Economics, Elsevier, vol. 128(C).
- Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
- Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
- Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
- Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
- Xu, Kunliang & Wang, Weiqing, 2023. "Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Lahmiri, Salim, 2024. "Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study," Resources Policy, Elsevier, vol. 92(C).
- Ilkay Oksuz & Umut Ugurlu, 2019. "Neural Network Based Model Comparison for Intraday Electricity Price Forecasting," Energies, MDPI, vol. 12(23), pages 1-14, November.
- Liu, Kailei & Cheng, Jinhua & Yi, Jiahui, 2022. "Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform," Resources Policy, Elsevier, vol. 75(C).
- Du, Pei & Guo, Ju’e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2021. "Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm," Resources Policy, Elsevier, vol. 74(C).
- Wu, Han & Liang, Yan & Gao, Xiao-Zhi & Du, Pei, 2024. "Auditory-circuit-motivated deep network with application to short-term electricity price forecasting," Energy, Elsevier, vol. 288(C).
- Xu, Kunliang & Niu, Hongli, 2022. "Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices?," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
More about this item
Keywords
Daily spot price forecasting; Decomposition ensemble approach; Fuzzy clustering method; Multiscale recognition; Machine learning method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000284. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.