IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v40y2021i2p327-345.html
   My bibliography  Save this article

Stock‐induced Google trends and the predictability of sectoral stock returns

Author

Listed:
  • Afees A. Salisu
  • Ahamuefula E. Ogbonna
  • Idris Adediran

Abstract

In this paper, we consider Google trends (G‐trends) as a measure of investors' attention in the predictability of stock returns across eleven major US sectors. The theoretical motivation for our paper is clear. In seeking information to guide investment decisions, investors' sentiments are shaped by news such as G‐trends that could induce changes in the prices of stocks. Thus, we construct a predictive model that incorporates G‐trends series as a predictor of stock returns and thereafter we account for evident asymmetry in G‐trends to analyze the signficance of positive‐ and negative‐worded news in the predictability of stock returns. We also compare single‐ and multi‐factor predictive models augmented with distinctive statistical effects against the baseline time series model. We highlight three key findings: (1) G‐trends record consistent negative correlations with stock returns across sectors. (2) The proposed predictive model with G‐trends outperforms the baseline (random walk) model. (3) The inclusion of asymmetry and macroeconomic variables improves the outperformance of G‐trends over the baseline model.

Suggested Citation

  • Afees A. Salisu & Ahamuefula E. Ogbonna & Idris Adediran, 2021. "Stock‐induced Google trends and the predictability of sectoral stock returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 327-345, March.
  • Handle: RePEc:wly:jforec:v:40:y:2021:i:2:p:327-345
    DOI: 10.1002/for.2722
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2722
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2722?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Narayan, Paresh Kumar & Liu, Ruipeng & Westerlund, Joakim, 2016. "A GARCH model for testing market efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 121-138.
    2. Narayan, Paresh Kumar & Phan, Dinh Hoang Bach, 2019. "A survey of Islamic banking and finance literature: Issues, challenges and future directions," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 484-496.
    3. Salisu, Afees A. & Fasanya, Ismail O., 2013. "Modelling oil price volatility with structural breaks," Energy Policy, Elsevier, vol. 52(C), pages 554-562.
    4. Narayan, Paresh Kumar & Phan, Dinh Hoang Bach & Sharma, Susan Sunila, 2019. "Does Islamic stock sensitivity to oil prices have economic significance?," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 497-512.
    5. Salisu, Afees A. & Ogbonna, Ahamuefula E. & Adewuyi, Adeolu, 2020. "Google trends and the predictability of precious metals," Resources Policy, Elsevier, vol. 65(C).
    6. Joakim Westerlund & Paresh Narayan, 2015. "Testing for Predictability in Conditionally Heteroskedastic Stock Returns," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 342-375.
    7. D’Amuri, Francesco & Marcucci, Juri, 2017. "The predictive power of Google searches in forecasting US unemployment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
    8. Tang, Wenbin & Zhu, Lili, 2017. "How security prices respond to a surge in investor attention: Evidence from Google Search of ADRs," Global Finance Journal, Elsevier, vol. 33(C), pages 38-50.
    9. Kim, Neri & Lučivjanská, Katarína & Molnár, Peter & Villa, Roviel, 2019. "Google searches and stock market activity: Evidence from Norway," Finance Research Letters, Elsevier, vol. 28(C), pages 208-220.
    10. Ekinci, Cumhur & Bulut, Ali Eray, 2021. "Google search and stock returns: A study on BIST 100 stocks," Global Finance Journal, Elsevier, vol. 47(C).
    11. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    12. Bannigidadmath, Deepa & Narayan, Paresh Kumar, 2016. "Stock return predictability and determinants of predictability and profits," Emerging Markets Review, Elsevier, vol. 26(C), pages 153-173.
    13. Salisu, Afees A. & Isah, Kazeem O., 2018. "Predicting US inflation: Evidence from a new approach," Economic Modelling, Elsevier, vol. 71(C), pages 134-158.
    14. Makin, Anthony J. & Narayan, Paresh Kumar & Narayan, Seema, 2014. "What expenditure does Anglosphere foreign borrowing fund?," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 63-78.
    15. Diego García, 2013. "Sentiment during Recessions," Journal of Finance, American Finance Association, vol. 68(3), pages 1267-1300, June.
    16. Westerlund, Joakim & Narayan, Paresh Kumar, 2012. "Does the choice of estimator matter when forecasting returns?," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2632-2640.
    17. Narayan, Paresh Kumar & Liu, Ruipeng, 2015. "A unit root model for trending time-series energy variables," Energy Economics, Elsevier, vol. 50(C), pages 391-402.
    18. Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
    19. Paresh Kumar Narayan & Stephan Popp, 2010. "A new unit root test with two structural breaks in level and slope at unknown time," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1425-1438.
    20. CURATOLA, Giuliano & DONADELLI, Michael & KIZYS, Renatas & RIEDEL, Max, 2016. "Investor Sentiment and Sectoral Stock Returns: Evidence from World Cup Games," Finance Research Letters, Elsevier, vol. 17(C), pages 267-274.
    21. Birz, Gene & Lott Jr., John R., 2011. "The effect of macroeconomic news on stock returns: New evidence from newspaper coverage," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2791-2800, November.
    22. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    23. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
    24. Afees A. Salisu & Umar B. Ndako & Tirimisiyu F. Oloko & Lateef O. Akanni, 2016. "Unit root modeling for trending stock market series," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(2), pages 82-91, June.
    25. Narayan, Paresh Kumar & Gupta, Rangan, 2015. "Has oil price predicted stock returns for over a century?," Energy Economics, Elsevier, vol. 48(C), pages 18-23.
    26. Minhyuk Kim & Jinwoo Park, 2015. "Individual Investor Sentiment and Stock Returns: Evidence from the Korean Stock Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(S5), pages 1-20, September.
    27. Merton, Robert C, 1987. "A Simple Model of Capital Market Equilibrium with Incomplete Information," Journal of Finance, American Finance Association, vol. 42(3), pages 483-510, July.
    28. Narayan, Paresh Kumar, 2019. "Can stale oil price news predict stock returns?," Energy Economics, Elsevier, vol. 83(C), pages 430-444.
    29. Matthias Bank & Martin Larch & Georg Peter, 2011. "Google search volume and its influence on liquidity and returns of German stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 25(3), pages 239-264, September.
    30. Qianwei Ying & Dongmin Kong & Danglun Luo, 2015. "Investor Attention, Institutional Ownership, and Stock Return: Empirical Evidence from China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(3), pages 672-685, May.
    31. Devpura, Neluka & Narayan, Paresh Kumar & Sharma, Susan Sunila, 2018. "Is stock return predictability time-varying?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 152-172.
    32. Salisu, Afees A. & Isah, Kazeem O., 2018. "Predicting US inflation: Evidence from a new approach," Economic Modelling, Elsevier, vol. 71(C), pages 134-158.
    33. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015. "Stock return forecasting: Some new evidence," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 38-51.
    34. Narayan, Paresh Kumar & Bannigidadmath, Deepa, 2015. "Are Indian stock returns predictable?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 506-531.
    35. Narayan, Paresh Kumar & Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Westerlund, Joakim, 2016. "Are Islamic stock returns predictable? A global perspective," Pacific-Basin Finance Journal, Elsevier, vol. 40(PA), pages 210-223.
    36. Tim Groseclose & Jeffrey Milyo, 2005. "A Measure of Media Bias," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(4), pages 1191-1237.
    37. Mishra, Vinod & Smyth, Russell, 2014. "Is monthly US natural gas consumption stationary? New evidence from a GARCH unit root test with structural breaks," Energy Policy, Elsevier, vol. 69(C), pages 258-262.
    38. Deepa & Paresh K Narayan, "undated". "Are Indian Stock Returns Predictable?," Working Papers 2015_07, Deakin University, Department of Economics.
    39. Salisu, Afees A. & Adeleke, Adegoke I., 2016. "Further application of Narayan and Liu (2015) unit root model for trending time series," Economic Modelling, Elsevier, vol. 55(C), pages 305-314.
    40. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    41. Takeda, Fumiko & Wakao, Takumi, 2014. "Google search intensity and its relationship with returns and trading volume of Japanese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 27(C), pages 1-18.
    42. Ni, Zhong-Xin & Wang, Da-Zhong & Xue, Wen-Jun, 2015. "Investor sentiment and its nonlinear effect on stock returns—New evidence from the Chinese stock market based on panel quantile regression model," Economic Modelling, Elsevier, vol. 50(C), pages 266-274.
    43. Narayan, Paresh Kumar & Bannigidadmath, Deepa, 2017. "Does Financial News Predict Stock Returns? New Evidence from Islamic and Non-Islamic Stocks," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 24-45.
    44. Özatay, Fatih & Özmen, Erdal & Sahinbeyoglu, Gülbin, 2009. "Emerging market sovereign spreads, global financial conditions and U.S. macroeconomic news," Economic Modelling, Elsevier, vol. 26(2), pages 526-531, March.
    45. Salisu, Afees A. & Mobolaji, Hakeem, 2013. "Modeling returns and volatility transmission between oil price and US–Nigeria exchange rate," Energy Economics, Elsevier, vol. 39(C), pages 169-176.
    46. Joseph, Kissan & Babajide Wintoki, M. & Zhang, Zelin, 2011. "Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1116-1127, October.
    47. Narayan, Paresh Kumar & Phan, Dinh Hoang Bach, 2017. "Momentum strategies for Islamic stocks," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 96-112.
    48. Zhang, Bing & Wang, Yudong, 2015. "Limited attention of individual investors and stock performance: Evidence from the ChiNext market," Economic Modelling, Elsevier, vol. 50(C), pages 94-104.
    49. Liyan Han & Ziying Li & Libo Yin, 2018. "Investor Attention and Stock Returns: International Evidence," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(14), pages 3168-3188, November.
    50. Xianming Fang & Yu Jiang & Zhijun Qian, 2014. "The Effects of Individual Investors' Attention on Stock Returns: Evidence from the ChiNext Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(03), pages 158-168, May.
    51. Xianming Fang & Yu Jiang & Zhijun Qian, 2014. "The Effects of Individual Investors' Attention on Stock Returns: Evidence from the ChiNext Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(S3), pages 158-168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olubusoye, Olusanya E & Yaya, OlaOluwa S. & Ogbonna, Ahamuefula, 2021. "An Information-Based Index of Uncertainty and the predictability of Energy Prices," MPRA Paper 109839, University Library of Munich, Germany.
    2. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Karikari, Nana Kwasi & Gil-Alana, Luis Alberiko, 2022. "The outbreak of COVID-19 and stock market liquidity: Evidence from emerging and developed equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    3. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    4. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Vo, Xuan Vinh, 2022. "Oil shocks and volatility of green investments: GARCH-MIDAS analyses," Resources Policy, Elsevier, vol. 78(C).
    5. Elie Bouri & Afees A. Salisu & Rangan Gupta, 2022. "Bitcoin Prices and the Realized Volatility of US Sectoral Stock Returns," Working Papers 202224, University of Pretoria, Department of Economics.
    6. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salisu, Afees A. & Ogbonna, Ahamuefula E. & Adewuyi, Adeolu, 2020. "Google trends and the predictability of precious metals," Resources Policy, Elsevier, vol. 65(C).
    2. Salisu, Afees A. & Vo, Xuan Vinh, 2021. "Firm-specific news and the predictability of Consumer stocks in Vietnam," Finance Research Letters, Elsevier, vol. 41(C).
    3. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
    4. Salisu, Afees A. & Vo, Xuan Vinh, 2020. "Predicting stock returns in the presence of COVID-19 pandemic: The role of health news," International Review of Financial Analysis, Elsevier, vol. 71(C).
    5. Salisu, Afees A. & Adekunle, Wasiu & Alimi, Wasiu A. & Emmanuel, Zachariah, 2019. "Predicting exchange rate with commodity prices: New evidence from Westerlund and Narayan (2015) estimator with structural breaks and asymmetries," Resources Policy, Elsevier, vol. 62(C), pages 33-56.
    6. Salisu, Afees A. & Raheem, Ibrahim D. & Ndako, Umar B., 2020. "The inflation hedging properties of gold, stocks and real estate: A comparative analysis," Resources Policy, Elsevier, vol. 66(C).
    7. Salisu, Afees A. & Ndako, Umar B. & Oloko, Tirimisiyu F., 2019. "Assessing the inflation hedging of gold and palladium in OECD countries," Resources Policy, Elsevier, vol. 62(C), pages 357-377.
    8. Tule, Moses K. & Salisu, Afees A. & Chiemeke, Charles C., 2019. "Can agricultural commodity prices predict Nigeria's inflation?," Journal of Commodity Markets, Elsevier, vol. 16(C).
    9. Salisu, Afees A. & Isah, Kazeem O. & Raheem, Ibrahim D., 2019. "Testing the predictability of commodity prices in stock returns of G7 countries: Evidence from a new approach," Resources Policy, Elsevier, vol. 64(C).
    10. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    11. Salisu, Afees A. & Gupta, Rangan & Karmakar, Sayar & Das, Sonali, 2022. "Forecasting output growth of advanced economies over eight centuries: The role of gold market volatility as a proxy of global uncertainty," Resources Policy, Elsevier, vol. 75(C).
    12. Moses Tule & Afees Salisu & Charles Chiemeke, 2020. "Improving Nigeria’s Inflation Forecast with Oil Price: The Role of Estimators," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(1), pages 191-229, March.
    13. Afees A. Salisu & Juncal Cunado & Kazeem Isah & Rangan Gupta, 2020. "Oil Price and Exchange Rate Behaviour of the BRICS for Over a Century," Working Papers 202064, University of Pretoria, Department of Economics.
    14. Salisu, Afees A. & Isah, Kazeem & Akanni, Lateef O., 2019. "Improving the predictability of stock returns with Bitcoin prices," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 857-867.
    15. Devpura, Neluka & Narayan, Paresh Kumar & Sharma, Susan Sunila, 2019. "Structural instability and predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    16. Salisu, Afees A. & Isah, Kazeem O., 2018. "Predicting US inflation: Evidence from a new approach," Economic Modelling, Elsevier, vol. 71(C), pages 134-158.
    17. repec:idn:journl:v:1:y:2019:i:sp2:p:1-12 is not listed on IDEAS
    18. Moses Tule & Afees A. Salisu & Charles Chimeke, 2018. "You are what you eat: The role of oil price in Nigeria inflation forecast," Working Papers 040, Centre for Econometric and Allied Research, University of Ibadan.
    19. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Vo, Xuan Vinh, 2022. "What drives cross-market correlations during the United States Q.E.?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    20. Salisu, Afees A. & Raheem, Ibrahim D. & Ndako, Umar B., 2019. "A sectoral analysis of asymmetric nexus between oil price and stock returns," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 241-259.
    21. Chen, Zhongdong & Craig, Karen Ann, 2023. "Active attention, retail investor base, and stock returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:2:p:327-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.