IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v19y2019i11p1839-1855.html
   My bibliography  Save this article

Capturing volatility persistence: a dynamically complete realized EGARCH-MIDAS model

Author

Listed:
  • Daniel Borup
  • Johan S. Jakobsen

Abstract

We introduce extensions of the Realized Exponential GARCH model (REGARCH) that capture the evident high persistence typically observed in measures of financial market volatility in a tractable fashion. The extensions decompose conditional variance into a short-term and a long-term component. The latter utilizes mixed-data sampling or a heterogeneous autoregressive structure, avoiding parameter proliferation otherwise incurred by using the classical ARMA structures embedded in the REGARCH. The proposed models are dynamically complete, facilitating multi-period forecasting. A thorough empirical investigation with an exchange-traded fund that tracks the S&P500 Index and 20 individual stocks shows that our models better capture the dependency structure of volatility. This leads to substantial improvements in empirical fit and predictive ability at both short and long horizons relative to the original REGARCH. A volatility-timing trading strategy shows that capturing volatility persistence yields substantial utility gains for a mean–variance investor at longer investment horizons.

Suggested Citation

  • Daniel Borup & Johan S. Jakobsen, 2019. "Capturing volatility persistence: a dynamically complete realized EGARCH-MIDAS model," Quantitative Finance, Taylor & Francis Journals, vol. 19(11), pages 1839-1855, November.
  • Handle: RePEc:taf:quantf:v:19:y:2019:i:11:p:1839-1855
    DOI: 10.1080/14697688.2019.1614653
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2019.1614653
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2019.1614653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    2. Lorraine Muguto & Paul-Francois Muzindutsi, 2022. "A Comparative Analysis of the Nature of Stock Return Volatility in BRICS and G7 Markets," JRFM, MDPI, vol. 15(2), pages 1-27, February.
    3. Bertelsen, Kristoffer Pons & Borup, Daniel & Jakobsen, Johan Stax, 2021. "Stock market volatility and public information flow: A non-linear perspective," Economics Letters, Elsevier, vol. 204(C).
    4. Christian Conrad & Robert F. Engle, 2021. "Modelling Volatility Cycles: The (MF)2 GARCH Model," Working Paper series 21-05, Rimini Centre for Economic Analysis.
    5. Wu, Xinyu & Xie, Haibin, 2021. "A realized EGARCH-MIDAS model with higher moments," Finance Research Letters, Elsevier, vol. 38(C).
    6. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    7. Afees A. Salisu & Riza Demirer & Rangan Gupta, 2023. "Policy uncertainty and stock market volatility revisited: The predictive role of signal quality," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2307-2321, December.
    8. Christian Conrad & Onno Kleen, 2020. "Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 19-45, January.
    9. Julien Chevallier & Bilel Sanhaji, 2023. "Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices," Stats, MDPI, vol. 6(4), pages 1-32, December.
    10. Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
    11. Heni Boubaker & Bassem Saidane & Mouna Ben Saad Zorgati, 2022. "Modelling the dynamics of stock market in the gulf cooperation council countries: evidence on persistence to shocks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-22, December.
    12. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    13. Chen, Zhonglu & Zhang, Li & Weng, Chen, 2023. "Does climate policy uncertainty affect Chinese stock market volatility?," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 369-381.
    14. Bahram Adrangi & Arjun Chatrath & Kambiz Raffiee, 2023. "S&P 500 volatility, volatility regimes, and economic uncertainty," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1362-1387, October.
    15. Lu, Xinjie & Su, Yuandong & Huang, Dengshi, 2023. "Chinese agricultural futures volatility: New insights from potential domestic and global predictors," International Review of Financial Analysis, Elsevier, vol. 89(C).
    16. Wang, Lu & Zhao, Chenchen & Liang, Chao & Jiu, Song, 2022. "Predicting the volatility of China's new energy stock market: Deep insight from the realized EGARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 48(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:19:y:2019:i:11:p:1839-1855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.