IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v89y2021i3p1449-1469.html
   My bibliography  Save this article

Salvaging Falsified Instrumental Variable Models

Author

Listed:
  • Matthew A. Masten
  • Alexandre Poirier

Abstract

What should researchers do when their baseline model is falsified? We recommend reporting the set of parameters that are consistent with minimally nonfalsified models. We call this the falsification adaptive set (FAS). This set generalizes the standard baseline estimand to account for possible falsification. Importantly, it does not require the researcher to select or calibrate sensitivity parameters. In the classical linear IV model with multiple instruments, we show that the FAS has a simple closed‐form expression that only depends on a few 2SLS coefficients. We apply our results to an empirical study of roads and trade. We show how the FAS complements traditional overidentification tests by summarizing the variation in estimates obtained from alternative nonfalsified models.

Suggested Citation

  • Matthew A. Masten & Alexandre Poirier, 2021. "Salvaging Falsified Instrumental Variable Models," Econometrica, Econometric Society, vol. 89(3), pages 1449-1469, May.
  • Handle: RePEc:wly:emetrp:v:89:y:2021:i:3:p:1449-1469
    DOI: 10.3982/ECTA17969
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA17969
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA17969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beresteanu, Arie & Molchanov, Ilya & Molinari, Francesca, 2012. "Partial identification using random set theory," Journal of Econometrics, Elsevier, vol. 166(1), pages 17-32.
    2. Donald W.K. Andrews & Soonwoo Kwon, 2019. "Inference in Moment Inequality Models That Is Robust to Spurious Precision under Model Misspecification," Cowles Foundation Discussion Papers 2184, Cowles Foundation for Research in Economics, Yale University, revised Oct 2019.
    3. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    4. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    5. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    6. Matthew A. Masten & Alexander Torgovitsky, 2016. "Identification of Instrumental Variable Correlated Random Coefficients Models," The Review of Economics and Statistics, MIT Press, vol. 98(5), pages 1001-1005, December.
    7. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    8. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    9. Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.
    10. Bugni, Federico A. & Canay, Ivan A. & Shi, Xiaoxia, 2015. "Specification tests for partially identified models defined by moment inequalities," Journal of Econometrics, Elsevier, vol. 185(1), pages 259-282.
    11. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    12. Richard Ashley, 2009. "Assessing the credibility of instrumental variables inference with imperfect instruments via sensitivity analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(2), pages 325-337, March.
    13. Stéphane Bonhomme & Martin Weidner, 2018. "Minimizing sensitivity to model misspecification," CeMMAP working papers CWP59/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Kreider, Brent & Pepper, John V., 2007. "Disability and Employment: Reevaluating the Evidence in Light of Reporting Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 432-441, June.
    15. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    16. Small, Dylan S., 2007. "Sensitivity Analysis for Instrumental Variables Regression With Overidentifying Restrictions," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1049-1058, September.
    17. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    18. Gilles Duranton & Peter M. Morrow & Matthew A. Turner, 2014. "Roads and Trade: Evidence from the US," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 681-724.
    19. Brent Kreider & John V. Pepper & Craig Gundersen & Dean Jolliffe, 2012. "Identifying the Effects of SNAP (Food Stamps) on Child Health Outcomes When Participation Is Endogenous and Misreported," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 958-975, September.
    20. Alexander Torgovitsky, 2019. "Partial identification by extending subdistributions," Quantitative Economics, Econometric Society, vol. 10(1), pages 105-144, January.
    21. Ta-Chung Liu, 1955. "A Simple Forecasting Model for the U.S. Economy," IMF Staff Papers, Palgrave Macmillan, vol. 4(3), pages 434-466, August.
    22. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2013. "On the Testability of Identification in Some Nonparametric Models With Endogeneity," Econometrica, Econometric Society, vol. 81(6), pages 2535-2559, November.
    23. Xavier D'Haultfoeuille & Christophe Gaillac & Arnaud Maurel, 2018. "Rationalizing Rational Expectations? Tests and Deviations," NBER Working Papers 25274, National Bureau of Economic Research, Inc.
    24. Sonja A. Swanson & Miguel A. Hernán & Matthew Miller & James M. Robins & Thomas S. Richardson, 2018. "Partial Identification of the Average Treatment Effect Using Instrumental Variables: Review of Methods for Binary Instruments, Treatments, and Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 933-947, April.
    25. Aart Kraay, 2012. "Instrumental variables regressions with uncertain exclusion restrictions: a Bayesian approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(1), pages 108-128, January.
    26. Huber, Martin, 2014. "Sensitivity checks for the local average treatment effect," Economics Letters, Elsevier, vol. 123(2), pages 220-223.
    27. Sundaram,Rangarajan K., 1996. "A First Course in Optimization Theory," Cambridge Books, Cambridge University Press, number 9780521497190, September.
    28. Kadane, Joseph B & Anderson, T W, 1977. "A Comment on the Test of Overidentifying Restrictions," Econometrica, Econometric Society, vol. 45(4), pages 1027-1031, May.
    29. Carlos A. Flores & Xuan Chen, 2018. "Average Treatment Effect Bounds with an Instrumental Variable: Theory and Practice," Springer Books, Springer, number 978-981-13-2017-0, December.
    30. Hansen, Lars Peter & Jagannathan, Ravi, 1991. "Implications of Security Market Data for Models of Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 225-262, April.
    31. Andrew Chesher & Adam M. Rosen, 2017. "Generalized Instrumental Variable Models," Econometrica, Econometric Society, vol. 85, pages 959-989, May.
    32. Charles F. Manski & John V. Pepper, 2018. "How Do Right-to-Carry Laws Affect Crime Rates? Coping with Ambiguity Using Bounded-Variation Assumptions," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 232-244, May.
    33. Gundersen, Craig & Kreider, Brent & Pepper, John, 2012. "The impact of the National School Lunch Program on child health: A nonparametric bounds analysis," Journal of Econometrics, Elsevier, vol. 166(1), pages 79-91.
    34. Matthew A. Masten & Alexandre Poirier, 2021. "Salvaging Falsified Instrumental Variable Models," Econometrica, Econometric Society, vol. 89(3), pages 1449-1469, May.
    35. Parente, Paulo M.D.C. & Santos Silva, J.M.C., 2012. "A cautionary note on tests of overidentifying restrictions," Economics Letters, Elsevier, vol. 115(2), pages 314-317.
    36. Anonymous, 1955. "International Monetary Fund," International Organization, Cambridge University Press, vol. 9(2), pages 277-278, May.
    37. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    38. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    39. Richard Ashley & Christopher Parmeter, 2015. "Sensitivity analysis for inference in 2SLS/GMM estimation with possibly flawed instruments," Empirical Economics, Springer, vol. 49(4), pages 1153-1171, December.
    40. Angrist, Joshua & Krueger, Alan B, 1994. "Why Do World War II Veterans Earn More Than Nonveterans?," Journal of Labor Economics, University of Chicago Press, vol. 12(1), pages 74-97, January.
    41. Machado, Cecilia & Shaikh, Azeem M. & Vytlacil, Edward J., 2019. "Instrumental variables and the sign of the average treatment effect," Journal of Econometrics, Elsevier, vol. 212(2), pages 522-555.
    42. Ludvigson, Sydney C., 2013. "Advances in Consumption-Based Asset Pricing: Empirical Tests," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 799-906, Elsevier.
    43. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2018. "Using Instrumental Variables for Inference About Policy Relevant Treatment Parameters," Econometrica, Econometric Society, vol. 86(5), pages 1589-1619, September.
    44. Nathan Nunn & Leonard Wantchekon, 2011. "The Slave Trade and the Origins of Mistrust in Africa," American Economic Review, American Economic Association, vol. 101(7), pages 3221-3252, December.
    45. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    46. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    47. Anonymous, 1955. "International Monetary Fund," International Organization, Cambridge University Press, vol. 9(1), pages 172-174, February.
    48. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2017. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1553-1592.
    49. Matthew A. Masten & Alexandre Poirier, 2020. "Inference on breakdown frontiers," Quantitative Economics, Econometric Society, vol. 11(1), pages 41-111, January.
    50. Sundaram,Rangarajan K., 1996. "A First Course in Optimization Theory," Cambridge Books, Cambridge University Press, number 9780521497701, September.
    51. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    52. Zheng Fang & Andres Santos, 2019. "Inference on Directionally Differentiable Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(1), pages 377-412.
    53. Toru Kitagawa, 2009. "Identification region of the potential outcome distributions under instrument independence," CeMMAP working papers CWP30/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    54. Magne Mogstad & Andres Santos & Alexander Torgovitsky, 2017. "Using Instrumental Variables for Inference about Policy Relevant Treatment Effects," NBER Working Papers 23568, National Bureau of Economic Research, Inc.
    55. Guggenberger, Patrik, 2012. "A note on the (in)consistency of the test of overidentifying restrictions and the concepts of true and pseudo-true parameters," Economics Letters, Elsevier, vol. 117(3), pages 901-904.
    56. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "An Evaluation of Instrumental Variable Strategies for Estimating the Effects of Catholic Schooling," Journal of Human Resources, University of Wisconsin Press, vol. 40(4), pages 791-821.
    57. Matzkin, Rosa L., 2007. "Nonparametric identification," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 73, Elsevier.
    58. V. Joseph Hotz & Charles H. Mullin & Seth G. Sanders, 1997. "Bounding Causal Effects Using Data from a Contaminated Natural Experiment: Analysing the Effects of Teenage Childbearing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 575-603.
    59. repec:wly:soecon:v:82:4:y:2016:p:1106-1122 is not listed on IDEAS
    60. Anonymous, 1955. "International Monetary Fund," International Organization, Cambridge University Press, vol. 9(3), pages 431-432, August.
    61. Trevor S. Breusch, 1986. "Hypothesis Testing in Unidentified Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 635-651.
    62. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Sukjin & Yang, Shenshen, 2024. "A computational approach to identification of treatment effects for policy evaluation," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Jakob Madsen & Holger Strulik, 2023. "Testing unified growth theory: Technological progress and the child quantity‐quality tradeoff," Quantitative Economics, Econometric Society, vol. 14(1), pages 235-275, January.
    3. Kyunghoon Ban & Désiré Kédagni, 2022. "Nonparametric bounds on treatment effects with imperfect instruments [Instrument-based estimation with binarized treatments: Issues and tests for the exclusion restriction]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 477-493.
    4. Lixiong Li & Désiré Kédagni & Ismaël Mourifié, 2024. "Discordant relaxations of misspecified models," Quantitative Economics, Econometric Society, vol. 15(2), pages 331-379, May.
    5. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    6. Moyu Liao, 2020. "Estimating Economic Models with Testable Assumptions: Theory and Applications," Papers 2002.10415, arXiv.org, revised Mar 2022.
    7. Xavier D'Haultfoeuille & Christophe Gaillac & Arnaud Maurel, 2021. "Rationalizing rational expectations: Characterizations and tests," Quantitative Economics, Econometric Society, vol. 12(3), pages 817-842, July.
    8. Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
    9. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    10. Marcoux, Mathieu & Russell, Thomas M. & Wan, Yuanyuan, 2024. "A simple specification test for models with many conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 242(1).
    11. Nicolas Apfel & Frank Windmeijer, 2022. "The Falsification Adaptive Set in Linear Models with Instrumental Variables that Violate the Exclusion or Conditional Exogeneity Restriction," Papers 2212.04814, arXiv.org, revised Apr 2024.
    12. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    13. Nicolas Apfel & Julia Hatamyar & Martin Huber & Jannis Kueck, 2024. "Learning control variables and instruments for causal analysis in observational data," Papers 2407.04448, arXiv.org.
    14. Roy Allen & John Rehbeck, 2020. "Counterfactual and Welfare Analysis with an Approximate Model," Papers 2009.03379, arXiv.org.
    15. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Tushar Bharati & Adnan M. S. Fakir, 2022. "Health Costs of a “Healthy Democracy”: The Impact of Peaceful Political Protests on Healthcare Utilization," Economics Discussion / Working Papers 22-15, The University of Western Australia, Department of Economics.
    17. Matthew A. Masten & Alexandre Poirier, 2021. "Salvaging Falsified Instrumental Variable Models," Econometrica, Econometric Society, vol. 89(3), pages 1449-1469, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    2. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    4. Ivan A. Canay & Azeem M. Shaikh, 2016. "Practical and theoretical advances in inference for partially identified models," CeMMAP working papers 05/16, Institute for Fiscal Studies.
    5. Tsunao Okumura & Emiko Usui, 2014. "Concave‐monotone treatment response and monotone treatment selection: With an application to the returns to schooling," Quantitative Economics, Econometric Society, vol. 5, pages 175-194, March.
    6. Magnac, Thierry, 2013. "Identification partielle : méthodes et conséquences pour les applications empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 233-258, Décembre.
    7. Han, Sukjin & Yang, Shenshen, 2024. "A computational approach to identification of treatment effects for policy evaluation," Journal of Econometrics, Elsevier, vol. 240(1).
    8. Tommasi, Denni & Zhang, Lina, 2024. "Bounding program benefits when participation is misreported," Journal of Econometrics, Elsevier, vol. 238(1).
    9. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    10. Claudia Noack, 2021. "Sensitivity of LATE Estimates to Violations of the Monotonicity Assumption," Papers 2106.06421, arXiv.org.
    11. Gu, Jiaying & Russell, Thomas M., 2023. "Partial identification in nonseparable binary response models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 235(2), pages 528-562.
    12. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    13. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    14. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    15. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    16. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    17. Kiviet, Jan F., 2020. "Testing the impossible: Identifying exclusion restrictions," Journal of Econometrics, Elsevier, vol. 218(2), pages 294-316.
    18. Ho, Kate & Rosen, Adam M., 2015. "Partial Identification in Applied Research: Benefits and Challenges," CEPR Discussion Papers 10883, C.E.P.R. Discussion Papers.
    19. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.
    20. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:89:y:2021:i:3:p:1449-1469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.