IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp4986.html
   My bibliography  Save this paper

Concave-Monotone Treatment Response and Monotone Treatment Selection: With an Application to the Returns to Schooling

Author

Listed:
  • Okumura, Tsunao

    (Yokohama National University)

  • Usui, Emiko

    (Hitotsubashi University)

Abstract

This paper identifies sharp bounds on the mean treatment response and average treatment effect under the assumptions of both concave monotone treatment response (concave-MTR) and monotone treatment selection (MTS). We use our bounds and the US National Longitudinal Survey of Youth to estimate mean returns to schooling. Our upper-bound estimates are substantially smaller than (1) estimates using only the concave-MTR assumption of Manski (1997) and (2) estimates using only the MTR and MTS assumptions of Manski and Pepper (2000). They fall in the lower range of the point estimates given in previous studies that assume linear wage functions. This is because ability bias is corrected by assuming MTS when the functions are close to linear. Our results therefore imply that higher returns reported in previous studies are likely to be overestimated.

Suggested Citation

  • Okumura, Tsunao & Usui, Emiko, 2010. "Concave-Monotone Treatment Response and Monotone Treatment Selection: With an Application to the Returns to Schooling," IZA Discussion Papers 4986, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp4986
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp4986.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Willis, Robert J & Rosen, Sherwin, 1979. "Education and Self-Selection," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 7-36, October.
    2. Richard Blundell & Amanda Gosling & Hidehiko Ichimura & Costas Meghir, 2007. "Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds," Econometrica, Econometric Society, vol. 75(2), pages 323-363, March.
    3. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2011. "Estimating Marginal Returns to Education," American Economic Review, American Economic Association, vol. 101(6), pages 2754-2781, October.
    4. Gundersen, Craig & Kreider, Brent, 2009. "Bounding the effects of food insecurity on children's health outcomes," Journal of Health Economics, Elsevier, vol. 28(5), pages 971-983, September.
    5. Kreider, Brent & Pepper, John V., 2007. "Disability and Employment: Reevaluating the Evidence in Light of Reporting Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 432-441, June.
    6. Brent Kreider & John V. Pepper & Craig Gundersen & Dean Jolliffe, 2012. "Identifying the Effects of SNAP (Food Stamps) on Child Health Outcomes When Participation Is Endogenous and Misreported," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 958-975, September.
    7. Michael Gerfin & Martin Schellhorn, 2006. "Nonparametric bounds on the effect of deductibles in health care insurance on doctor visits – Swiss evidence," Health Economics, John Wiley & Sons, Ltd., vol. 15(9), pages 1011-1020, September.
    8. Card, David, 1999. "The causal effect of education on earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 30, pages 1801-1863, Elsevier.
    9. Joseph P. Romano & Azeem M. Shaikh, 2010. "Inference for the Identified Set in Partially Identified Econometric Models," Econometrica, Econometric Society, vol. 78(1), pages 169-211, January.
    10. Brent Kreider & Steven C. Hill, 2009. "Partially Identifying Treatment Effects with an Application to Covering the Uninsured," Journal of Human Resources, University of Wisconsin Press, vol. 44(2).
    11. Philipp Eisenhauer & James J. Heckman & Edward Vytlacil, 2015. "The Generalized Roy Model and the Cost-Benefit Analysis of Social Programs," Journal of Political Economy, University of Chicago Press, vol. 123(2), pages 413-443.
    12. Brent Kreider & John Pepper, 2008. "Inferring disability status from corrupt data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 329-349.
    13. Changhui Kang, 2011. "Family Size and Educational Investments in Children: Evidence from Private Tutoring Expenditures in South Korea," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(1), pages 59-78, February.
    14. Jorg Stoye, 2009. "More on Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 77(4), pages 1299-1315, July.
    15. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    16. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    17. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    18. Federico A. Bugni, 2010. "Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set," Econometrica, Econometric Society, vol. 78(2), pages 735-753, March.
    19. Pamela Giustinelli, 2011. "Non‐parametric bounds on quantiles under monotonicity assumptions: with an application to the Italian education returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(5), pages 783-824, August.
    20. Gundersen, Craig & Kreider, Brent & Pepper, John, 2012. "The impact of the National School Lunch Program on child health: A nonparametric bounds analysis," Journal of Econometrics, Elsevier, vol. 166(1), pages 79-91.
    21. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    22. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    23. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    24. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    25. Jian Huang & Henriëtte Maassen van den Brink & Wim Groot, 2012. "Does education promote social capital? Evidence from IV analysis and nonparametric-bound analysis," Empirical Economics, Springer, vol. 42(3), pages 1011-1034, June.
    26. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    27. Tsunao Okumura, 2011. "Nonparametric Estimation of Labor Supply and Demand Factors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 174-185, January.
    28. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    29. Canay, Ivan A., 2010. "EL inference for partially identified models: Large deviations optimality and bootstrap validity," Journal of Econometrics, Elsevier, vol. 156(2), pages 408-425, June.
    30. Libertad González, 2005. "Nonparametric bounds on the returns to language skills," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(6), pages 771-795.
    31. Philip A. Haile & Elie Tamer, 2003. "Inference with an Incomplete Model of English Auctions," Journal of Political Economy, University of Chicago Press, vol. 111(1), pages 1-51, February.
    32. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    33. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    34. O. Ashenfelter & D. Card (ed.), 1999. "Handbook of Labor Economics," Handbook of Labor Economics, Elsevier, edition 1, volume 3, number 3.
    35. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    36. Stefan Boes, 2010. "Convex Treatment Response and Treatment Selection," SOI - Working Papers 1001, Socioeconomic Institute - University of Zurich.
    37. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    38. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    39. Charles F. Manski & John V. Pepper, 2009. "More on monotone instrumental variables," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 200-216, January.
    40. Lang, Kevin, 1993. "Ability Bias, Discount Rate Bias and the Return to Education," MPRA Paper 24651, University Library of Munich, Germany.
    41. Monique de Haan, 2011. "The Effect of Parents' Schooling on Child's Schooling: A Nonparametric Bounds Analysis," Journal of Labor Economics, University of Chicago Press, vol. 29(4), pages 859-892.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    2. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    3. Sung Jae Jun & Sokbae (Simon) Lee, 2020. "Causal inference in case-control studies," CeMMAP working papers CWP19/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Demuynck, Thomas, 2015. "Bounding average treatment effects: A linear programming approach," Economics Letters, Elsevier, vol. 137(C), pages 75-77.
    5. Das, Tirthatanmoy & Polachek, Solomon, 2017. "Micro Foundations of Earnings Differences," IZA Discussion Papers 10922, Institute of Labor Economics (IZA).
    6. Stefan Boes, 2009. "Bounds on Counterfactual Distributions Under Semi-Monotonicity Constraints," SOI - Working Papers 0920, Socioeconomic Institute - University of Zurich.
    7. Nobuyoshi Kikuchi, 2017. "Intergenerational Transmission of Education in Japan: Nonparametric Bounds Analysis with Multiple Treatments," ISER Discussion Paper 1011, Institute of Social and Economic Research, Osaka University.
    8. Stefan Boes, 2010. "Convex Treatment Response and Treatment Selection," SOI - Working Papers 1001, Socioeconomic Institute - University of Zurich.
    9. Sungwon Lee, 2024. "Partial identification and inference for conditional distributions of treatment effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 107-127, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    2. Ho, Kate & Rosen, Adam M., 2015. "Partial Identification in Applied Research: Benefits and Challenges," CEPR Discussion Papers 10883, C.E.P.R. Discussion Papers.
    3. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    4. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Stefan Boes, 2009. "Bounds on Counterfactual Distributions Under Semi-Monotonicity Constraints," SOI - Working Papers 0920, Socioeconomic Institute - University of Zurich.
    6. Magnac, Thierry, 2013. "Identification partielle : méthodes et conséquences pour les applications empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 233-258, Décembre.
    7. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    8. Yuan Liao & Anna Simoni, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," Papers 1212.3267, arXiv.org, revised Nov 2013.
    9. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    10. Fan, Yanqin & Park, Sang Soo, 2014. "Nonparametric inference for counterfactual means: Bias-correction, confidence sets, and weak IV," Journal of Econometrics, Elsevier, vol. 178(P1), pages 45-56.
    11. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    12. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2014. "Inference for functions of partially identified parameters in moment inequality models," CeMMAP working papers 22/14, Institute for Fiscal Studies.
    13. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    14. Ivan A. Canay & Azeem M. Shaikh, 2016. "Practical and theoretical advances in inference for partially identified models," CeMMAP working papers 05/16, Institute for Fiscal Studies.
    15. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
    16. Arun G. Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2019. "Best Linear Approximations to Set Identified Functions: With an Application to the Gender Wage Gap," NBER Working Papers 25593, National Bureau of Economic Research, Inc.
    17. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.
    18. repec:cwl:cwldpp:1761rr is not listed on IDEAS
    19. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    20. Yuan Liao & Anna Simoni, 2016. "Bayesian Inference for Partially Identified Convex Models: Is it Valid for Frequentist Inference?," Departmental Working Papers 201607, Rutgers University, Department of Economics.
    21. Armstrong, Timothy B. & Chan, Hock Peng, 2016. "Multiscale adaptive inference on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 194(1), pages 24-43.

    More about this item

    Keywords

    sharp bounds; partial identification; nonparametric methods; returns to schooling; treatment response;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp4986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.