IDEAS home Printed from https://ideas.repec.org/p/exe/wpaper/1111.html
   My bibliography  Save this paper

A Cautionary Note on Tests for Overidentifying Restrictions

Author

Listed:
  • Paulo M.D.C. Parente

    (Department of Economics, University of Exeter)

  • Joao M.C. Santos Silva

    (University of Essex and CEMAPRE)

Abstract

Tests of overidentifying restrictions are widely used in practice. However, there is often confusion about the nature of their null hypothesis and about the interpretation of their outcome. In this note we argue that these tests give little information on whether the instruments are correlated with the errors of the underlaying economic model and on whether they identify parameters of interest.

Suggested Citation

  • Paulo M.D.C. Parente & Joao M.C. Santos Silva, 2011. "A Cautionary Note on Tests for Overidentifying Restrictions," Discussion Papers 1111, University of Exeter, Department of Economics.
  • Handle: RePEc:exe:wpaper:1111
    as

    Download full text from publisher

    File URL: https://exetereconomics.github.io/RePEc/dpapers/DP1111.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Helena Holmlund & Mikael Lindahl & Erik Plug, 2011. "The Causal Effect of Parents' Schooling on Children's Schooling: A Comparison of Estimation Methods," Journal of Economic Literature, American Economic Association, vol. 49(3), pages 615-651, September.
    2. Angus Deaton, 2010. "Instruments, Randomization, and Learning about Development," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 424-455, June.
    3. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    4. Ichino, Andrea & Winter-Ebmer, Rudolf, 1999. "Lower and upper bounds of returns to schooling: An exercise in IV estimation with different instruments," European Economic Review, Elsevier, vol. 43(4-6), pages 889-901, April.
    5. Rembert De Blander, 2008. "Which null hypothesis do overidentification restrictions actually test?," Economics Bulletin, AccessEcon, vol. 3(76), pages 1-9.
    6. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    7. repec:ebl:ecbull:v:3:y:2008:i:76:p:1-9 is not listed on IDEAS
    8. Hall, Alastair R. & Pelletier, Denis, 2011. "Nonnested Testing In Models Estimated Via Generalized Method Of Moments," Econometric Theory, Cambridge University Press, vol. 27(2), pages 443-456, April.
    9. Joshua D. Angrist & Kathryn Graddy & Guido W. Imbens, 2000. "The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(3), pages 499-527.
    10. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    11. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    12. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    13. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Blundell & Jack Britton & Monica Costa Dias & Eric French, 2023. "The Impact of Health on Labor Supply near Retirement," Journal of Human Resources, University of Wisconsin Press, vol. 58(1), pages 282-334.
    2. P. Dorian Owen, 2017. "Evaluating Ingenious Instruments for Fundamental Determinants of Long-Run Economic Growth and Development," Econometrics, MDPI, vol. 5(3), pages 1-33, September.
    3. Słoczyński, Tymon, 2012. "New Evidence on Linear Regression and Treatment Effect Heterogeneity," MPRA Paper 39524, University Library of Munich, Germany.
    4. Kiviet, Jan F., 2020. "Testing the impossible: Identifying exclusion restrictions," Journal of Econometrics, Elsevier, vol. 218(2), pages 294-316.
    5. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    6. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    7. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    8. von Hinke, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2016. "Genetic markers as instrumental variables," Journal of Health Economics, Elsevier, vol. 45(C), pages 131-148.
    9. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    10. Joshua D. Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path From Cause to Effect," Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
    11. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.
    12. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    13. Dieterle, Steven G. & Snell, Andy, 2016. "A simple diagnostic to investigate instrument validity and heterogeneous effects when using a single instrument," Labour Economics, Elsevier, vol. 42(C), pages 76-86.
    14. Qin, Duo, 2014. "Resurgence of instrument variable estimation and fallacy of endogeneity," Economics Discussion Papers 2014-42, Kiel Institute for the World Economy (IfW Kiel).
    15. Masakure, Oliver, 2016. "The effect of employee loyalty on wages," Journal of Economic Psychology, Elsevier, vol. 56(C), pages 274-298.
    16. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    17. Ellis, Jimmy R. & Gershenson, Seth, 2016. "LATE for the Meeting: Gender, Peer Advising, and College Success," IZA Discussion Papers 9956, Institute of Labor Economics (IZA).
    18. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    19. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Woutersen, Tiemen & Hausman, Jerry A., 2019. "Increasing the power of specification tests," Journal of Econometrics, Elsevier, vol. 211(1), pages 166-175.

    More about this item

    Keywords

    GMM; Hansen's J-test; Instrumental variables; Sargan test.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exe:wpaper:1111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sebastian Kripfganz (email available below). General contact details of provider: https://edirc.repec.org/data/deexeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.