IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2109.14785.html
   My bibliography  Save this paper

Nonparametric Bounds on Treatment Effects with Imperfect Instruments

Author

Listed:
  • Kyunghoon Ban
  • D'esir'e K'edagni

Abstract

This paper extends the identification results in Nevo and Rosen (2012) to nonparametric models. We derive nonparametric bounds on the average treatment effect when an imperfect instrument is available. As in Nevo and Rosen (2012), we assume that the correlation between the imperfect instrument and the unobserved latent variables has the same sign as the correlation between the endogenous variable and the latent variables. We show that the monotone treatment selection and monotone instrumental variable restrictions, introduced by Manski and Pepper (2000, 2009), jointly imply this assumption. Moreover, we show how the monotone treatment response assumption can help tighten the bounds. The identified set can be written in the form of intersection bounds, which is more conducive to inference. We illustrate our methodology using the National Longitudinal Survey of Young Men data to estimate returns to schooling.

Suggested Citation

  • Kyunghoon Ban & D'esir'e K'edagni, 2021. "Nonparametric Bounds on Treatment Effects with Imperfect Instruments," Papers 2109.14785, arXiv.org.
  • Handle: RePEc:arx:papers:2109.14785
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2109.14785
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    2. Willis, Robert J & Rosen, Sherwin, 1979. "Education and Self-Selection," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 7-36, October.
    3. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    4. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    5. Charles F. Manski, 1997. "Monotone Treatment Response," Econometrica, Econometric Society, vol. 65(6), pages 1311-1334, November.
    6. Victor Chernozhukov & Wooyoung Kim & Sokbae Lee & Adam M. Rosen, 2015. "Implementing intersection bounds in Stata," Stata Journal, StataCorp LP, vol. 15(1), pages 21-44, March.
    7. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    8. Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.
    9. Martin E Andresen & Martin Huber, 2021. "Instrument-based estimation with binarised treatments: issues and tests for the exclusion restriction," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 536-558.
    10. Machado, Cecilia & Shaikh, Azeem M. & Vytlacil, Edward J., 2019. "Instrumental variables and the sign of the average treatment effect," Journal of Econometrics, Elsevier, vol. 212(2), pages 522-555.
    11. Désiré Kédagni & Ismael Mourifié, 2020. "Generalized instrumental inequalities: testing the instrumental variable independence assumption," Biometrika, Biometrika Trust, vol. 107(3), pages 661-675.
    12. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    13. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    14. V. Joseph Hotz & Charles H. Mullin & Seth G. Sanders, 1997. "Bounding Causal Effects Using Data from a Contaminated Natural Experiment: Analysing the Effects of Teenage Childbearing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 575-603.
    15. Donald W. K. Andrews & Wooyoung Kim & Xiaoxia Shi, 2017. "Commands for testing conditional moment inequalities and equalities," Stata Journal, StataCorp LP, vol. 17(1), pages 56-72, March.
    16. Matthew A. Masten & Alexandre Poirier, 2021. "Salvaging Falsified Instrumental Variable Models," Econometrica, Econometric Society, vol. 89(3), pages 1449-1469, May.
    17. Bhattacharya, Jay & Shaikh, Azeem M. & Vytlacil, Edward, 2012. "Treatment effect bounds: An application to Swan–Ganz catheterization," Journal of Econometrics, Elsevier, vol. 168(2), pages 223-243.
    18. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    19. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    20. Donna K. Ginther, 2000. "Alternative Estimates of the Effect of Schooling on Earnings," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 103-116, February.
    21. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    22. Robert J. Lemke & Isaac C. Rischall, 2003. "Skill, parental income, and IV estimation of the returns to schooling," Applied Economics Letters, Taylor & Francis Journals, vol. 10(5), pages 281-286, April.
    23. Charles F. Manski & John V. Pepper, 2009. "More on monotone instrumental variables," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 200-216, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    2. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Santiago Acerenza & Otávio Bartalotti & Désiré Kédagni, 2023. "Testing identifying assumptions in bivariate probit models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 407-422, April.
    5. Tsunao Okumura & Emiko Usui, 2014. "Concave‐monotone treatment response and monotone treatment selection: With an application to the returns to schooling," Quantitative Economics, Econometric Society, vol. 5, pages 175-194, March.
    6. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    7. Lixiong Li & Désiré Kédagni & Ismaël Mourifié, 2024. "Discordant relaxations of misspecified models," Quantitative Economics, Econometric Society, vol. 15(2), pages 331-379, May.
    8. Matthew A. Masten & Alexandre Poirier, 2021. "Salvaging Falsified Instrumental Variable Models," Econometrica, Econometric Society, vol. 89(3), pages 1449-1469, May.
    9. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.
    10. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    11. Victor Chernozhukov & Wooyoung Kim & Sokbae Lee & Adam M. Rosen, 2015. "Implementing intersection bounds in Stata," Stata Journal, StataCorp LP, vol. 15(1), pages 21-44, March.
    12. Vira Semenova, 2023. "Aggregated Intersection Bounds and Aggregated Minimax Values," Papers 2303.00982, arXiv.org, revised Jun 2024.
    13. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    14. Magnac, Thierry, 2013. "Identification partielle : méthodes et conséquences pour les applications empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 233-258, Décembre.
    15. Han, Sukjin & Yang, Shenshen, 2024. "A computational approach to identification of treatment effects for policy evaluation," Journal of Econometrics, Elsevier, vol. 240(1).
    16. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    17. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    18. Sungwon Lee, 2024. "Partial identification and inference for conditional distributions of treatment effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 107-127, January.
    19. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    20. Wenlong Ji & Lihua Lei & Asher Spector, 2023. "Model-Agnostic Covariate-Assisted Inference on Partially Identified Causal Effects," Papers 2310.08115, arXiv.org, revised Nov 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.14785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.