IDEAS home Printed from https://ideas.repec.org/a/vrs/ceuecj/v3y2017i50p01-25n1.html
   My bibliography  Save this article

EWS-GARCH: New Regime Switching Approach to Forecast Value-at-Risk

Author

Listed:
  • Chlebus Marcin

    (Faculty of Economic Science, University of Warsaw, WarsawPoland)

Abstract

In the study, the two-step EWS-GARCH models to forecast Value-at-Risk is presented. The EWS-GARCH allows different distributions of returns or Value-at-Risk forecasting models to be used in Value-at-Risk forecasting depending on a forecasted state of the financial time series. In the study EWS-GARCH with GARCH(1,1) and GARCH(1,1), with the amendment to the empirical distribution of random errors as a Value-at-Risk model in a state of tranquillity and empirical tail, exponential or Pareto distributions used to forecast Value-at-Risk in a state of turbulence were considered. The evaluation of Value-at-Risk forecasts was based on the Value-at-Risk forecasts and the analysis of loss functions. Obtained results indicate that EWS-GARCH models may improve the quality of Value-at-Risk forecasts generated using the benchmark models. However, the choice of best assumptions for the EWS-GARCH model should depend on the goals of the Value-at-Risk forecasting model. The final selection may depend on an expected level of adequacy, conservatism and costs of the model.

Suggested Citation

  • Chlebus Marcin, 2017. "EWS-GARCH: New Regime Switching Approach to Forecast Value-at-Risk," Central European Economic Journal, Sciendo, vol. 3(50), pages 01-25, December.
  • Handle: RePEc:vrs:ceuecj:v:3:y:2017:i:50:p:01-25:n:1
    DOI: 10.1515/ceej-2017-0014
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ceej-2017-0014
    Download Restriction: no

    File URL: https://libkey.io/10.1515/ceej-2017-0014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert Engle, 2004. "Risk and Volatility: Econometric Models and Financial Practice," American Economic Review, American Economic Association, vol. 94(3), pages 405-420, June.
    2. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    3. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    4. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
    5. Gencay, Ramazan & Selcuk, Faruk, 2004. "Extreme value theory and Value-at-Risk: Relative performance in emerging markets," International Journal of Forecasting, Elsevier, vol. 20(2), pages 287-303.
    6. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    7. McAleer, Michael & Jimenez-Martin, Juan-Angel & Perez-Amaral, Teodosio, 2013. "Has the Basel Accord improved risk management during the global financial crisis?," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 250-265.
    8. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    9. Timotheos Angelidis & Alexandros Benos, 2008. "Value-at-Risk for Greek Stocks," Multinational Finance Journal, Multinational Finance Journal, vol. 12(1-2), pages 67-104, March-Jun.
    10. Giovanni Barone-Adesi & Kostas Giannopoulos, 2001. "Non parametric VaR Techniques. Myths and Realities," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(2), pages 167-181, July.
    11. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    12. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    13. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    14. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    15. Ozun, Alper & Cifter, Atilla & Yilmazer, Sait, 2007. "Filtered Extreme Value Theory for Value-At-Risk Estimation," MPRA Paper 3302, University Library of Munich, Germany.
    16. Alper Ozun & Atilla Cifter & Sait Yilmazer, 2010. "Filtered extreme-value theory for value-at-risk estimation: evidence from Turkey," Journal of Risk Finance, Emerald Group Publishing, vol. 11(2), pages 164-179, March.
    17. Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
    18. Hung, Jui-Cheng & Lee, Ming-Chih & Liu, Hung-Chun, 2008. "Estimation of value-at-risk for energy commodities via fat-tailed GARCH models," Energy Economics, Elsevier, vol. 30(3), pages 1173-1191, May.
    19. Degiannakis, Stavros & Floros, Christos & Livada, Alexandra, 2012. "Evaluating Value-at-Risk Models before and after the Financial Crisis of 2008: International Evidence," MPRA Paper 80463, University Library of Munich, Germany.
    20. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 75, European Central Bank.
    21. Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-316, July.
    22. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    23. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    24. Marcin Chlebus, 2016. "One-Day Prediction of State of Turbulence for Portfolio. Models for Binary Dependent Variable," Working Papers 2016-01, Faculty of Economic Sciences, University of Warsaw.
    25. Felix Chan & Michael McAleer, 2002. "Maximum likelihood estimation of STAR and STAR-GARCH models: theory and Monte Carlo evidence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 509-534.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mateusz Buczynski & Marcin Chlebus, 2024. "GARCHNet: Value-at-Risk Forecasting with GARCH Models Based on Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1949-1979, May.
    2. Marcin Chlebus, 2016. "Can Lognormal, Weibull or Gamma Distributions Improve the EWS-GARCH Value-at-Risk Forecasts?," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Magdalena Osińska (ed.), Statistical Review, vol. 63, 2016, 3, edition 1, volume 63, chapter 4, pages 329-350, University of Lodz.
    3. Mateusz Buczyński & Marcin Chlebus, 2021. "GARCHNet - Value-at-Risk forecasting with novel approach to GARCH models based on neural networks," Working Papers 2021-08, Faculty of Economic Sciences, University of Warsaw.
    4. Mateusz Buczyński & Marcin Chlebus, 2019. "Old-fashioned parametric models are still the best. A comparison of Value-at-Risk approaches in several volatility states," Working Papers 2019-12, Faculty of Economic Sciences, University of Warsaw.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Chlebus, 2016. "Can Lognormal, Weibull or Gamma Distributions Improve the EWS-GARCH Value-at-Risk Forecasts?," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Magdalena Osińska (ed.), Statistical Review, vol. 63, 2016, 3, edition 1, volume 63, chapter 4, pages 329-350, University of Lodz.
    2. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    3. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    4. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    5. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    6. Buczyński Mateusz & Chlebus Marcin, 2018. "Comparison of Semi-Parametric and Benchmark Value-At-Risk Models in Several Time Periods with Different Volatility Levels," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(2), pages 67-82, June.
    7. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    8. Bauwens Luc & Storti Giuseppe, 2009. "A Component GARCH Model with Time Varying Weights," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-33, May.
    9. Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013. "GFC-robust risk management under the Basel Accord using extreme value methodologies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
    10. Mateusz Buczyński & Marcin Chlebus, 2017. "Is CAViaR model really so good in Value at Risk forecasting? Evidence from evaluation of a quality of Value-at-Risk forecasts obtained based on the: GARCH(1,1), GARCH-t(1,1), GARCH-st(1,1), QML-GARCH(," Working Papers 2017-29, Faculty of Economic Sciences, University of Warsaw.
    11. Jean-Paul Laurent & Hassan Omidi Firouzi, 2022. "Market Risk and Volatility Weighted Historical Simulation After Basel III," Working Papers hal-03679434, HAL.
    12. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    13. Degiannakis, Stavros & Floros, Christos & Livada, Alexandra, 2012. "Evaluating Value-at-Risk Models before and after the Financial Crisis of 2008: International Evidence," MPRA Paper 80463, University Library of Munich, Germany.
    14. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    15. Carol Alexander & Emese Lazar & Silvia Stanescu, 2011. "Analytic Approximations to GARCH Aggregated Returns Distributions with Applications to VaR and ETL," ICMA Centre Discussion Papers in Finance icma-dp2011-08, Henley Business School, University of Reading.
    16. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    17. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    18. El Bouhadi, Abdelhamid & Achibane, Khalid, 2009. "The Predictive Power of Conditional Models: What Lessons to Draw with Financial Crisis in the Case of Pre-Emerging Capital Markets?," MPRA Paper 19482, University Library of Munich, Germany.
    19. Laura Garcia-Jorcano & Alfonso Novales, 2020. "A dominance approach for comparing the performance of VaR forecasting models," Computational Statistics, Springer, vol. 35(3), pages 1411-1448, September.
    20. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.

    More about this item

    Keywords

    value-at-risk; state of turbulence; GARCH; tail distributions; market risk;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:ceuecj:v:3:y:2017:i:50:p:01-25:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.