IDEAS home Printed from https://ideas.repec.org/a/rsk/journ5/7553981.html
   My bibliography  Save this article

Old-fashioned parametric models are still the best: a comparison of value-at-risk approaches in several volatility states

Author

Listed:
  • Mateusz BuczyÅ„ski
  • Marcin Chlebus

Abstract

Numerous advances in the modeling techniques of value-at-risk (VaR) have;provided financial institutions with a wide range of market risk approaches. However, which model to use depends on the state of volatility. We present backtesting results for 1% and 2.5% VaR of six indexes from emerging and developed countries using several of the best-known VaR models, including generalized autoregressive conditional heteroscedasticity (GARCH), extreme value theory (EVT), conditional autoregressive VaR (CAViaR) and filtered historical simulation (FHS) with multiple sets of parameters. The backtesting procedure is based on the excess ratio, Kupiec and Christoffersen tests for multiple thresholds and cost functions. The main contribution of this paper is that we compared the models in four different scenarios, with different states of volatility in the training and testing samples. The results indicate that the best of the models, ie, the least affected by changes in the volatility, is GARCH(1,1) with a standardized Student t distribution. Nonparametric techniques (eg, CAViaR with GARCH setup or FHS with a skewed normal distribution) have very prominent results in testing periods with low volatility, but they are worse in turbulent periods. We also discuss an automatic method to set an extreme distribution threshold for EVT models as well as several ensembling methods for VaR, of which the minimum VaR estimate from the best models – in particular, a minimum of GARCH(1,1) with a standardized Student t distribution and either the EVT or the CAViaR model – has been proven to give very good results.

Suggested Citation

  • Mateusz BuczyÅ„ski & Marcin Chlebus, . "Old-fashioned parametric models are still the best: a comparison of value-at-risk approaches in several volatility states," Journal of Risk Model Validation, Journal of Risk Model Validation.
  • Handle: RePEc:rsk:journ5:7553981
    as

    Download full text from publisher

    File URL: https://www.risk.net/journal-of-risk-model-validation/7553981/old-fashioned-parametric-models-are-still-the-best-a-comparison-of-value-at-risk-approaches-in-several-volatility-states
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. McAleer, Michael & Jimenez-Martin, Juan-Angel & Perez-Amaral, Teodosio, 2013. "Has the Basel Accord improved risk management during the global financial crisis?," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 250-265.
    2. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    3. Chlebus Marcin, 2017. "EWS-GARCH: New Regime Switching Approach to Forecast Value-at-Risk," Central European Economic Journal, Sciendo, vol. 3(50), pages 01-25, December.
    4. A. Amendola & V. Candila, 2016. "Evaluation of volatility predictions in a VaR framework," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 695-709, May.
    5. Degiannakis, Stavros & Floros, Christos & Livada, Alexandra, 2012. "Evaluating Value-at-Risk Models before and after the Financial Crisis of 2008: International Evidence," MPRA Paper 80463, University Library of Munich, Germany.
    6. Alex YiHou Huang, 2009. "A value-at-risk approach with kernel estimator," Applied Financial Economics, Taylor & Francis Journals, vol. 19(5), pages 379-395.
    7. Gerlach, Richard H. & Chen, Cathy W. S. & Chan, Nancy Y. C., 2011. "Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 481-492.
    8. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    9. Philip Yu & Wai Keung Li & Shusong Jin, 2010. "On Some Models for Value-At-Risk," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 622-641.
    10. Ozun, Alper & Cifter, Atilla & Yilmazer, Sait, 2007. "Filtered Extreme Value Theory for Value-At-Risk Estimation," MPRA Paper 3302, University Library of Munich, Germany.
    11. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    12. Arnold Polanski & Evarist Stoja, 2010. "Incorporating higher moments into value-at-risk forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 523-535.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
    2. Aleksander Schiffers & Marcin Chlebus, 2021. "The effectiveness of Value-at-Risk models in various volatility regimes," Working Papers 2021-28, Faculty of Economic Sciences, University of Warsaw.
    3. Murphy, David & Vause, Nicholas, 2021. "A CBA of APC: analysing approaches to procyclicality reduction in CCP initial margin models," Bank of England working papers 950, Bank of England.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    2. Mateusz Buczynski & Marcin Chlebus, 2024. "GARCHNet: Value-at-Risk Forecasting with GARCH Models Based on Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1949-1979, May.
    3. Mateusz Buczyński & Marcin Chlebus, 2021. "GARCHNet - Value-at-Risk forecasting with novel approach to GARCH models based on neural networks," Working Papers 2021-08, Faculty of Economic Sciences, University of Warsaw.
    4. Abad, Pilar & Benito, Sonia, 2013. "A detailed comparison of value at risk estimates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 258-276.
    5. Laura Garcia-Jorcano & Alfonso Novales, 2020. "A dominance approach for comparing the performance of VaR forecasting models," Computational Statistics, Springer, vol. 35(3), pages 1411-1448, September.
    6. Marcin Chlebus, 2016. "Can Lognormal, Weibull or Gamma Distributions Improve the EWS-GARCH Value-at-Risk Forecasts?," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Magdalena Osińska (ed.), Statistical Review, vol. 63, 2016, 3, edition 1, volume 63, chapter 4, pages 329-350, University of Lodz.
    7. Chlebus Marcin, 2017. "EWS-GARCH: New Regime Switching Approach to Forecast Value-at-Risk," Central European Economic Journal, Sciendo, vol. 3(50), pages 01-25, December.
    8. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    9. Evangelos Vasileiou, 2022. "Inaccurate Value at Risk Estimations: Bad Modeling or Inappropriate Data?," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1155-1171, March.
    10. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    11. Ahmed Ali & Granberg Mark & Troster Victor & Uddin Gazi Salah, 2022. "Asymmetric dynamics between uncertainty and unemployment flows in the United States," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 155-172, February.
    12. Wilson Calmon & Eduardo Ferioli & Davi Lettieri & Johann Soares & Adrian Pizzinga, 2021. "An Extensive Comparison of Some Well‐Established Value at Risk Methods," International Statistical Review, International Statistical Institute, vol. 89(1), pages 148-166, April.
    13. Amira Akl Ahmed & Doaa Akl Ahmed, 2016. "Modelling Conditional Volatility and Downside Risk for Istanbul Stock Exchange," Working Papers 1028, Economic Research Forum, revised Jul 2016.
    14. Huarng, Kun-Huang & Yu, Tiffany Hui-Kuang, 2014. "A new quantile regression forecasting model," Journal of Business Research, Elsevier, vol. 67(5), pages 779-784.
    15. Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013. "GFC-robust risk management under the Basel Accord using extreme value methodologies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
    16. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    17. Su, Ender & Wong, Kai Wen, 2018. "Measuring bank downside systemic risk in Taiwan," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 172-193.
    18. Kellner, Ralf & Rösch, Daniel, 2016. "Quantifying market risk with Value-at-Risk or Expected Shortfall? – Consequences for capital requirements and model risk," Journal of Economic Dynamics and Control, Elsevier, vol. 68(C), pages 45-63.
    19. Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
    20. repec:agr:journl:v:4(621):y:2019:i:4(621):p:201-218 is not listed on IDEAS
    21. Wilson Ye Chen & Gareth W. Peters & Richard H. Gerlach & Scott A. Sisson, 2017. "Dynamic Quantile Function Models," Papers 1707.02587, arXiv.org, revised May 2021.

    More about this item

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ5:7553981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-risk-model-validation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.