IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/1923.html
   My bibliography  Save this paper

A dominance approach for comparing the performance of VaR forecasting models

Author

Listed:
  • Laura Garcia-Jorcano

    (Department of Economic Analysis and Finance (Area of Financial Economics), Facultad de Ciencias Jurídicas y Sociales Universidad de Castilla-La Mancha, Toledo, Spain.)

  • Alfonso Novales

    (Instituto Complutense de Análisis Económico (ICAE), and Department of Economic Analysis, Facultad de Ciencias Económicas y Empresariales, Universidad Complutense, 28223 Madrid, Spain.)

Abstract

We introduce three dominance criteria to compare the performance of alternative VaR forecasting models. The three criteria use the information provided by a battery of VaR validation tests based on the frequency and size of exceedances, offering the possibility of efficiently summarizing a large amount of statistical information. They do not require the use of any loss function defined on the difference between VaR forecasts and observed returns, and two of the criteria are not conditioned on any significance level for the VaR tests. We use them to explore the potential for 1-day ahead VaR forecasting of some recently proposed asymmetric probability distributions for return innovations, as well as to compare the APARCH and FGARCH volatility specifications with more standard alternatives. Using 19 assets of different nature, the three criteria lead to similar conclusions, suggesting that the unbounded Johnson SU, the skewed Student-t and the skewed Generalized-t distributions seem to produce the best VaR forecasts. The added flexibility of a free power parameter in the conditional volatility in the APARCH and FGARCH models leads to a better fit to return data, but it does not improve upon the VaR forecasts provided by GARCH and GJR-GARCH volatilities.

Suggested Citation

  • Laura Garcia-Jorcano & Alfonso Novales, 2019. "A dominance approach for comparing the performance of VaR forecasting models," Documentos de Trabajo del ICAE 2019-23, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  • Handle: RePEc:ucm:doicae:1923
    as

    Download full text from publisher

    File URL: https://eprints.ucm.es/id/eprint/57129/1/1923.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christophe Pérignon & R.D. Smith, 2008. "A New Approach to Comparing VaR Estimation Methods," Post-Print hal-00854087, HAL.
    2. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
    3. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    4. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    5. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    6. Choi, Pilsun & Nam, Kiseok, 2008. "Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 41-63, January.
    7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    8. Alper Ozun & Atilla Cifter & Sait Yılmazer, 2010. "Filtered extreme‐value theory for value‐at‐risk estimation: evidence from Turkey," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 11(2), pages 164-179, March.
    9. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    10. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    11. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    12. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    13. Bhattacharyya, Malay & Ritolia, Gopal, 2008. "Conditional VaR using EVT - Towards a planned margin scheme," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 382-395.
    14. Kratz, Marie & Lok, Yen H. & McNeil, Alexander J., 2018. "Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 393-407.
    15. Cheng-Few Lee & John C. Lee (ed.), 2015. "Handbook of Financial Econometrics and Statistics," Springer Books, Springer, edition 127, number 978-1-4614-7750-1, June.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Cathy W.S. Chen & Richard Gerlach & Edward M. H. Lin & W. C. W. Lee, 2012. "Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(8), pages 661-687, December.
    18. Philip Yu & Wai Keung Li & Shusong Jin, 2010. "On Some Models for Value-At-Risk," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 622-641.
    19. Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: Intra-day versus inter-day models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 449-465, December.
    20. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    21. Colletaz, Gilbert & Hurlin, Christophe & Pérignon, Christophe, 2013. "The Risk Map: A new tool for validating risk models," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3843-3854.
    22. repec:syb:wpbsba:03/2011 is not listed on IDEAS
    23. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    24. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    25. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    26. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    27. Manuela Braione & Nicolas K. Scholtes, 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," Econometrics, MDPI, vol. 4(1), pages 1-27, January.
    28. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    29. BRAIONE, Manuela & SCHOLTES, Nicolas K., 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," LIDAM Reprints CORE 2733, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    30. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
    31. Ozun, Alper & Cifter, Atilla & Yilmazer, Sait, 2007. "Filtered Extreme Value Theory for Value-At-Risk Estimation," MPRA Paper 3302, University Library of Munich, Germany.
    32. Alper Ozun & Atilla Cifter & Sait Yilmazer, 2010. "Filtered extreme-value theory for value-at-risk estimation: evidence from Turkey," Journal of Risk Finance, Emerald Group Publishing, vol. 11(2), pages 164-179, March.
    33. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting extreme value theory models of expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 799-825, May.
    34. Diamandis, Panayiotis F. & Drakos, Anastassios A. & Kouretas, Georgios P. & Zarangas, Leonidas, 2011. "Value-at-risk for long and short trading positions: Evidence from developed and emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 165-176, June.
    35. Susan Thomas & Mandira Sarma & Ajay Shah, 2003. "Selection of Value-at-Risk models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 337-358.
    36. Leccadito, Arturo & Boffelli, Simona & Urga, Giovanni, 2014. "Evaluating the accuracy of value-at-risk forecasts: New multilevel tests," International Journal of Forecasting, Elsevier, vol. 30(2), pages 206-216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Garcia-Jorcano & Lidia Sanchis-Marco, 2023. "Measuring Systemic Risk Using Multivariate Quantile-Located ES Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 1-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    2. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    3. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    5. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    6. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    7. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    8. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    9. Cheng, Wan-Hsiu & Hung, Jui-Cheng, 2011. "Skewness and leptokurtosis in GARCH-typed VaR estimation of petroleum and metal asset returns," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 160-173, January.
    10. Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013. "GFC-robust risk management under the Basel Accord using extreme value methodologies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
    11. Abad, Pilar & Benito, Sonia, 2013. "A detailed comparison of value at risk estimates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 258-276.
    12. Maghyereh Aktham Issa & Awartani Basel, 2012. "Modeling and Forecasting Value-at-Risk in the UAE Stock Markets: The Role of Long Memory, Fat Tails and Asymmetries in Return Innovations," Review of Middle East Economics and Finance, De Gruyter, vol. 8(1), pages 1-22, August.
    13. Degiannakis, Stavros & Floros, Christos & Livada, Alexandra, 2012. "Evaluating Value-at-Risk Models before and after the Financial Crisis of 2008: International Evidence," MPRA Paper 80463, University Library of Munich, Germany.
    14. Bei, Shuhua & Yang, Aijun & Pei, Haotian & Si, Xiaoli, 2023. "Price Risk Analysis using GARCH Family Models: Evidence from Shanghai Crude Oil Futures Market," Economic Modelling, Elsevier, vol. 125(C).
    15. Sang Hoon Kang & Seong-Min Yoon, 2009. "Value-at-Risk Analysis for Asian Emerging Markets: Asymmetry and Fat Tails in Returns Innovation," Korean Economic Review, Korean Economic Association, vol. 25, pages 387-411.
    16. Tafakori, Laleh & Pourkhanali, Armin & Fard, Farzad Alavi, 2018. "Forecasting spikes in electricity return innovations," Energy, Elsevier, vol. 150(C), pages 508-526.
    17. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    18. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    19. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    20. Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898, arXiv.org, revised Oct 2014.

    More about this item

    Keywords

    Value at risk; Backtesting; Forecast evaluation; Dominance; Conditional volatility models; Asymmetric distributions.;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:1923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Águeda González Abad (email available below). General contact details of provider: https://edirc.repec.org/data/feucmes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.