A dominance approach for comparing the performance of VaR forecasting models
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-020-00990-4
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Laura Garcia-Jorcano & Alfonso Novales, 2019. "A dominance approach for comparing the performance of VaR forecasting models," Documentos de Trabajo del ICAE 2019-23, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
References listed on IDEAS
- Christophe Pérignon & R.D. Smith, 2008. "A New Approach to Comparing VaR Estimation Methods," Post-Print hal-00854087, HAL.
- Giacomini, Raffaella & Komunjer, Ivana, 2005.
"Evaluation and Combination of Conditional Quantile Forecasts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
- Giacomini, Raffaella & Komunjer, Ivana, 2002. "Evaluation and Combination of Conditional Quantile Forecasts," University of California at San Diego, Economics Working Paper Series qt4n99t4wz, Department of Economics, UC San Diego.
- Raffaella Giacomini & Ivana Komunjer, 2003. "Evaluation and Combination of Conditional Quantile Forecasts," Boston College Working Papers in Economics 571, Boston College Department of Economics.
- Pierre Giot & Sébastien Laurent, 2003.
"Value-at-risk for long and short trading positions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
- GIOT, Pierre & LAURENT, Sébastien, 2001. "Value-at-risk for long and short trading positions," LIDAM Discussion Papers CORE 2001022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Value-at-Risk for long and short trading positions," LIDAM Reprints CORE 1707, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot and S»bastien Laurent, 2001. "Value-At-Risk For Long And Short Trading Positions," Computing in Economics and Finance 2001 94, Society for Computational Economics.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Alper Ozun & Atilla Cifter & Sait Yılmazer, 2010. "Filtered extreme‐value theory for value‐at‐risk estimation: evidence from Turkey," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 11(2), pages 164-179, March.
- Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Bhattacharyya, Malay & Ritolia, Gopal, 2008. "Conditional VaR using EVT - Towards a planned margin scheme," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 382-395.
- Philip Yu & Wai Keung Li & Shusong Jin, 2010. "On Some Models for Value-At-Risk," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 622-641.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008.
"Volatility forecasting: Intra-day versus inter-day models,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 449-465, December.
- Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: Intra-day versus inter-day models," MPRA Paper 96322, University Library of Munich, Germany.
- Nakajima, Jouchi & Omori, Yasuhiro, 2012.
"Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
- Jouchi Nakajima & Yasuhiro Omori, 2009. "Stochastic Volatility Model with Leverage and Asymmetrically Heavy-Tailed Error Using GH Skew Student's t-Distribution," CIRJE F-Series CIRJE-F-701, CIRJE, Faculty of Economics, University of Tokyo.
- Jouchi Nakajima & Yasuhiro Omori, 2010. "Stochastic Volatility Model with Leverage and Asymmetrically Heavy-tailed Error Using GH Skew Student's t-distribution," Global COE Hi-Stat Discussion Paper Series gd09-124, Institute of Economic Research, Hitotsubashi University.
- Jouchi Nakajima & Yasuhiro Omori, 2010. "Stochastic Volatility Model with Leverage and Asymmetrically Heavy-Tailed Error Using GH Skew Student?s t-Distribution," CARF F-Series CARF-F-215, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Jouchi Nakajima & Yasuhiro Omori, 2009. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student's t-distribution," CARF F-Series CARF-F-199, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Colletaz, Gilbert & Hurlin, Christophe & Pérignon, Christophe, 2013.
"The Risk Map: A new tool for validating risk models,"
Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3843-3854.
- Gilbert Colletaz & Christophe Hurlin & Christophe Pérignon, 2012. "The Risk Map: A New Tool for Validating Risk Models," Working Papers halshs-00746273, HAL.
- repec:syb:wpbsba:03/2011 is not listed on IDEAS
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
- Manuela Braione & Nicolas K. Scholtes, 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," Econometrics, MDPI, vol. 4(1), pages 1-27, January.
- Schwert, G William, 1990.
"Stock Volatility and the Crash of '87,"
The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
- Schwert, G.W., 1989. "Stock Volatility And The Crash Of '87," Papers 89-01, Rochester, Business - General.
- G. William Schwert, 1989. "Stock Volatility and the Crash of '87," NBER Working Papers 2954, National Bureau of Economic Research, Inc.
- Kratz, Marie & Lok, Yen H. & McNeil, Alexander J., 2018.
"Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 88(C), pages 393-407.
- Marie Kratz & Yen H. Lok & Alexander J McNeil, 2016. "Multinomial VaR Backtests: A simple implicit approach to backtesting expected shortfall," Papers 1611.04851, arXiv.org.
- Robert F. Engle & Simone Manganelli, 2004.
"CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
- Cathy W.S. Chen & Richard Gerlach & Edward M. H. Lin & W. C. W. Lee, 2012.
"Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(8), pages 661-687, December.
- Chen, Cathy W.S. & Gerlach, Richard & Lee, Wcw & Lin, Edward M.H., 2011. "Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis," Working Papers 03/2011, University of Sydney Business School, Discipline of Business Analytics.
- Ozun, Alper & Cifter, Atilla & Yilmazer, Sait, 2007. "Filtered Extreme Value Theory for Value-At-Risk Estimation," MPRA Paper 3302, University Library of Munich, Germany.
- Alper Ozun & Atilla Cifter & Sait Yilmazer, 2010. "Filtered extreme-value theory for value-at-risk estimation: evidence from Turkey," Journal of Risk Finance, Emerald Group Publishing, vol. 11(2), pages 164-179, March.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Diamandis, Panayiotis F. & Drakos, Anastassios A. & Kouretas, Georgios P. & Zarangas, Leonidas, 2011. "Value-at-risk for long and short trading positions: Evidence from developed and emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 20(3), pages 165-176, June.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Susan Thomas & Mandira Sarma & Ajay Shah, 2003. "Selection of Value-at-Risk models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 337-358.
- Leccadito, Arturo & Boffelli, Simona & Urga, Giovanni, 2014. "Evaluating the accuracy of value-at-risk forecasts: New multilevel tests," International Journal of Forecasting, Elsevier, vol. 30(2), pages 206-216.
- Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
- Choi, Pilsun & Nam, Kiseok, 2008. "Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 41-63, January.
- Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
- Cheng-Few Lee & John C. Lee (ed.), 2015. "Handbook of Financial Econometrics and Statistics," Springer Books, Springer, edition 127, number 978-1-4614-7750-1, December.
- Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
- Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
- BRAIONE, Manuela & SCHOLTES, Nicolas K., 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," LIDAM Reprints CORE 2733, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
- Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting extreme value theory models of expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 799-825, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Laura Garcia-Jorcano & Lidia Sanchis-Marco, 2023. "Measuring Systemic Risk Using Multivariate Quantile-Located ES Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 1-72.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Laura Garcia‐Jorcano & Alfonso Novales, 2021.
"Volatility specifications versus probability distributions in VaR forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
- Laura Garcia-Jorcano & Alfonso Novales, 2019. "Volatility specifications versus probability distributions in VaR forecasting," Documentos de Trabajo del ICAE 2019-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
- Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
- Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
- Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
- Cheng, Wan-Hsiu & Hung, Jui-Cheng, 2011. "Skewness and leptokurtosis in GARCH-typed VaR estimation of petroleum and metal asset returns," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 160-173, January.
- Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013.
"GFC-robust risk management under the Basel Accord using extreme value methodologies,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
- Paulo Araújo Santos & Juan-Ángel Jiménez-Martín & Michael McAleer & Teodosio Pérez Amaral, 2011. "GFC-Robust Risk Management Under the Basel Accord Using Extreme Value Methodologies," Documentos de Trabajo del ICAE 2011-27, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Juan-Angel Jimenez-Martin & Michael McAleer & Teodosio Perez Amaral & Paulo Araujo Santos, 2013. "GFC-Robust Risk Management under the Basel Accord using Extreme Value Methodologies," Tinbergen Institute Discussion Papers 13-070/III, Tinbergen Institute.
- Michael McAleer & Paulo Araújo Santos & Juan-à ngel Jiménez-MartÃn & Teodosio Pérez Amaral, 2011. "GFC-Robust Risk Management Under the Basel Accord Using Extreme Value Methodologies," KIER Working Papers 782, Kyoto University, Institute of Economic Research.
- Santos, P.A. & Jiménez-Martín, J.A. & McAleer, M.J. & Pérez-Amaral, T., 2011. "GFC-Robust Risk Management Under the Basel Accord Using Extreme Value Methodologies," Econometric Institute Research Papers EI2011-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Paulo Araújo Santos & Juan-Ángel Jiménez-Martín & Michael McAleer & Teodosio Pérez Amaral, 2011. "GFC-Robust Risk Management Under the Basel Accord Using Extreme Value Methodologies," Working Papers in Economics 11/28, University of Canterbury, Department of Economics and Finance.
- Abad, Pilar & Benito, Sonia, 2013. "A detailed comparison of value at risk estimates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 258-276.
- Maghyereh Aktham Issa & Awartani Basel, 2012. "Modeling and Forecasting Value-at-Risk in the UAE Stock Markets: The Role of Long Memory, Fat Tails and Asymmetries in Return Innovations," Review of Middle East Economics and Finance, De Gruyter, vol. 8(1), pages 1-22, August.
- Degiannakis, Stavros & Floros, Christos & Livada, Alexandra, 2012. "Evaluating Value-at-Risk Models before and after the Financial Crisis of 2008: International Evidence," MPRA Paper 80463, University Library of Munich, Germany.
- Bei, Shuhua & Yang, Aijun & Pei, Haotian & Si, Xiaoli, 2023. "Price Risk Analysis using GARCH Family Models: Evidence from Shanghai Crude Oil Futures Market," Economic Modelling, Elsevier, vol. 125(C).
- Tafakori, Laleh & Pourkhanali, Armin & Fard, Farzad Alavi, 2018. "Forecasting spikes in electricity return innovations," Energy, Elsevier, vol. 150(C), pages 508-526.
- Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021.
"Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures,"
Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
- Denisa Banulescu & Christophe Hurlin & Jeremy Leymarie & O. Scaillet, 2019. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Swiss Finance Institute Research Paper Series 19-48, Swiss Finance Institute.
- Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Post-Print hal-03526444, HAL.
- Banulescu-Radu, Denisa & Hurlin, Christophe & Leymarie, Jeremy & Scaillet, Olivier, 2020. "Backtesting marginal expected shortfalland related systemic risk measures," Working Papers unige:134136, University of Geneva, Geneva School of Economics and Management.
- Denisa Banulescu & Christophe Hurlin & Jeremy Leymarie & Olivier Scaillet, 2020. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Working Papers halshs-03088668, HAL.
- Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020.
"Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary,"
Papers
2009.07341, arXiv.org.
- Dimitriadis, Timo & Liu, Xiaochun & Schnaitmann, Julie, 2020. "Encompassing tests for value at risk and expected shortfall multi-step forecasts based on inference on the boundary," Hohenheim Discussion Papers in Business, Economics and Social Sciences 11-2020, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
- Gordy, Michael B. & McNeil, Alexander J., 2020.
"Spectral backtests of forecast distributions with application to risk management,"
Journal of Banking & Finance, Elsevier, vol. 116(C).
- Michael B. Gordy & Alexander J. McNeil, 2017. "Spectral backtests of forecast distributions with application to risk management," Papers 1708.01489, arXiv.org, revised Jul 2019.
- Michael B. Gordy & Alexander J. McNeil, 2018. "Spectral Backtests of Forecast Distributions with Application to Risk Management," Finance and Economics Discussion Series 2018-021, Board of Governors of the Federal Reserve System (U.S.).
- Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898, arXiv.org, revised Oct 2014.
- Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
More about this item
Keywords
Value at risk; Backtesting; Forecast evaluation; Dominance; Conditional volatility models; asymmetric distributions;All these keywords.
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-020-00990-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.