IDEAS home Printed from https://ideas.repec.org/p/aim/wpaimx/2429.html
   My bibliography  Save this paper

Bayesian inference for income inequality using a Pareto II tail with an uncertain threshold: Combining EU-SILC and WID data

Author

Abstract

When estimated from survey data alone, the distribution of high incomes in a population may be misrepresented, as surveys typically provide detailed coverage of the lower part of the income distribution, but offer limited information on top incomes. Tax data, in contrast, better capture top incomes, but lack contextual information. To combine these data sources, Pareto models are often used to represent the upper tail of the income distribution. In this paper, we propose a Bayesian approach for this purpose, building on extreme value theory. Our method integrates a Pareto II tail with a semi-parametric model for the central part of the income distribution, and it selects the income threshold separating them endogenously. We incorporate external tax data through an informative prior on the Pareto II coefficient to complement survey micro-data. We find that Bayesian inference can yield a wide range of threshold estimates, which are sensitive to how the central part of the distribution is modelled. Applying our methodology to the EU-SILC micro-data set for 2008 and 2018, we find that using tax-data information from WID introduces no changes to inequality estimates for Nordic countries or The Netherlands, which rely on administrative registers for income data. However, tax data significantly revise survey-based inequality estimates in new EU member states.

Suggested Citation

  • Mathias Silva & Michel Lubrano, 2024. "Bayesian inference for income inequality using a Pareto II tail with an uncertain threshold: Combining EU-SILC and WID data," AMSE Working Papers 2429, Aix-Marseille School of Economics, France.
  • Handle: RePEc:aim:wpaimx:2429
    as

    Download full text from publisher

    File URL: https://www.amse-aixmarseille.fr/sites/default/files/working_papers/wp_2024_-_nr_29.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2012. "A new model of income distribution: the κ-generalized distribution," Journal of Economics, Springer, vol. 105(1), pages 63-91, January.
    2. Alvaredo, Facundo, 2011. "A note on the relationship between top income shares and the Gini coefficient," Economics Letters, Elsevier, vol. 110(3), pages 274-277, March.
    3. Nora Lustig, 2019. "The “Missing Rich” in Household Surveys: Causes and Correction Approaches," Commitment to Equity (CEQ) Working Paper Series 75, Tulane University, Department of Economics.
    4. A. B. Atkinson, 2017. "Pareto and the Upper Tail of the Income Distribution in the UK: 1799 to the Present," Economica, London School of Economics and Political Science, vol. 84(334), pages 129-156, April.
    5. François Bourguignon, 2018. "Simple adjustments of observed distributions for missing income and missing people," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(2), pages 171-188, June.
    6. Nora Lustig, 2020. "The ``missing rich'' in household surveys: causes and correction approaches," Working Papers 520, ECINEQ, Society for the Study of Economic Inequality.
    7. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
    8. Thomas Blanchet & Juliette Fournier & Thomas Piketty, 2022. "Generalized Pareto Curves: Theory and Applications," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(1), pages 263-288, March.
    9. Stefan Angel & Franziska Disslbacher & Stefan Humer & Matthias Schnetzer, 2019. "What did you really earn last year?: explaining measurement error in survey income data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1411-1437, October.
    10. A. B. Atkinson, 2005. "Top incomes in the UK over the 20th century," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 325-343, March.
    11. Cowell, Frank, 2011. "Measuring Inequality," OUP Catalogue, Oxford University Press, edition 3, number 9780199594047.
    12. Stephen P. Jenkins, 2017. "Pareto Models, Top Incomes and Recent Trends in UK Income Inequality," Economica, London School of Economics and Political Science, vol. 84(334), pages 261-289, April.
    13. David Scollnik, 2007. "On composite lognormal-Pareto models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2007(1), pages 20-33.
    14. Thomas Blanchet & Ignacio Flores & Marc Morgan, 2022. "The weight of the rich: improving surveys using tax data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 119-150, March.
    15. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    16. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    17. Emmanuel Flachaire & Nora Lustig & Andrea Vigorito, 2023. "Underreporting of Top Incomes and Inequality: A Comparison of Correction Methods using Simulations and Linked Survey and Tax Data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(4), pages 1033-1059, December.
    18. Arthur Charpentier & Emmanuel Flachaire, 2022. "Pareto models for top incomes and wealth," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 1-25, March.
    19. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim, 2021. "On Bayesian approach to composite Pareto models," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-22, September.
    20. Charlotte Bartels & Maria Metzing, 2019. "An integrated approach for a top-corrected income distribution," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 17(2), pages 125-143, June.
    21. Cabras, Stefano & Castellanos, María Eugenia, 2011. "A Bayesian Approach for Estimating Extreme Quantiles Under a Semiparametric Mixture Model," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 87-106, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathias Silva & Michel Lubrano, 2023. "Bayesian correction for missing rich using a Pareto II tail with unknown threshold: Combining EU-SILC and WID data," AMSE Working Papers 2320, Aix-Marseille School of Economics, France.
    2. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    3. Frank Cowell & Emmanuel Flachaire, 2021. "Inequality Measurement: Methods and Data," Post-Print hal-03589066, HAL.
    4. Haiyuan Wan & Yangcheng Yu, 2023. "Correction of China's income inequality for missing top incomes," Review of Development Economics, Wiley Blackwell, vol. 27(3), pages 1769-1791, August.
    5. Bartels, Charlotte & Waldenström, Daniel, 2021. "Inequality and top incomes," GLO Discussion Paper Series 959, Global Labor Organization (GLO).
    6. Emmenegger Jana & Münnich Ralf, 2023. "Localising the Upper Tail: How Top Income Corrections Affect Measures of Regional Inequality," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 243(3-4), pages 285-317, June.
    7. Diego Winkelried & Bruno Escobar, 2022. "Declining inequality in Latin America? Robustness checks for Peru," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 223-243, March.
    8. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    9. Pablo Gutiérrez Cubillos, 2022. "Gini and undercoverage at the upper tail: a simple approximation," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 29(2), pages 443-471, April.
    10. Ooms, Tahnee, 2021. "Correcting the underestimation of capital incomes in inequality indicators: with an application to the UK, 1997–2016," LSE Research Online Documents on Economics 108900, London School of Economics and Political Science, LSE Library.
    11. Vladimir Hlasny & Paolo Verme, 2022. "The Impact of Top Incomes Biases on the Measurement of Inequality in the United States," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 749-788, August.
    12. Jordá, Vanesa & Niño-Zarazúa, Miguel, 2019. "Global inequality: How large is the effect of top incomes?," World Development, Elsevier, vol. 123(C), pages 1-1.
    13. Tahnee Christelle Ooms, 2021. "Correcting the Underestimation of Capital Incomes in Inequality Indicators: with an Application to the UK, 1997–2016," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 157(3), pages 929-953, October.
    14. Advani, Arun, 2021. "Missing Incomes in the UK : Evidence and Policy Implications," The Warwick Economics Research Paper Series (TWERPS) 1364, University of Warwick, Department of Economics.
    15. Thomas Blanchet & Ignacio Flores & Marc Morgan, 2022. "The weight of the rich: improving surveys using tax data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(1), pages 119-150, March.
    16. Emmanuel Flachaire & Nora Lustig & Andrea Vigorito, 2023. "Underreporting of Top Incomes and Inequality: A Comparison of Correction Methods using Simulations and Linked Survey and Tax Data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(4), pages 1033-1059, December.
    17. Rafael Carranza & Marc Morgan & Brian Nolan, 2023. "Top Income Adjustments and Inequality: An Investigation of the EU‐SILC," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(3), pages 725-754, September.
    18. Nora Lustig, 2019. "The “Missing Rich” in Household Surveys: Causes and Correction Approaches," Commitment to Equity (CEQ) Working Paper Series 75, Tulane University, Department of Economics.
    19. François Bourguignon, 2018. "Simple adjustments of observed distributions for missing income and missing people," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(2), pages 171-188, June.
    20. Burdín, Gabriel & De Rosa, Mauricio & Vigorito, Andrea & Vilá, Joan, 2022. "Falling inequality and the growing capital income share: Reconciling divergent trends in survey and tax data," World Development, Elsevier, vol. 152(C).

    More about this item

    Keywords

    top income correction; Pareto II; Bayesian inference; extreme value theory; EU-SILC;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • I31 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General Welfare, Well-Being

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aim:wpaimx:2429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gregory Cornu (email available below). General contact details of provider: https://edirc.repec.org/data/amseafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.