IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i509p159-174.html
   My bibliography  Save this article

Bayesian Inference of Multiple Gaussian Graphical Models

Author

Listed:
  • Christine Peterson
  • Francesco C. Stingo
  • Marina Vannucci

Abstract

In this article, we propose a Bayesian approach to inference on multiple Gaussian graphical models. Specifically, we address the problem of inferring multiple undirected networks in situations where some of the networks may be unrelated, while others share common features. We link the estimation of the graph structures via a Markov random field (MRF) prior, which encourages common edges. We learn which sample groups have a shared graph structure by placing a spike-and-slab prior on the parameters that measure network relatedness. This approach allows us to share information between sample groups, when appropriate, as well as to obtain a measure of relative network similarity across groups. Our modeling framework incorporates relevant prior knowledge through an edge-specific informative prior and can encourage similarity to an established network. Through simulations, we demonstrate the utility of our method in summarizing relative network similarity and compare its performance against related methods. We find improved accuracy of network estimation, particularly when the sample sizes within each subgroup are moderate. We also illustrate the application of our model to infer protein networks for various cancer subtypes and under different experimental conditions.

Suggested Citation

  • Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:159-174
    DOI: 10.1080/01621459.2014.896806
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.896806
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.896806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
    2. Valen E. Johnson & David Rossell, 2012. "Bayesian Model Selection in High-Dimensional Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 649-660, June.
    3. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    4. Dobra, Adrian & Hans, Chris & Jones, Beatrix & Nevins, J.R.Joseph R. & Yao, Guang & West, Mike, 2004. "Sparse graphical models for exploring gene expression data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 196-212, July.
    5. Donatello Telesca & Peter Müller & Steven M. Kornblau & Marc A. Suchard & Yuan Ji, 2012. "Modeling Protein Expression and Protein Signaling Pathways," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1372-1384, December.
    6. Peter D. Hoff, 2009. "A hierarchical eigenmodel for pooled covariance estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 971-992, November.
    7. Alberto Roverato, 2002. "Hyper Inverse Wishart Distribution for Non‐decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 391-411, September.
    8. Valen E. Johnson & David Rossell, 2010. "On the use of non‐local prior densities in Bayesian hypothesis tests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 143-170, March.
    9. Li, Fan & Zhang, Nancy R., 2010. "Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces With Applications in Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1202-1214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elin Shaddox & Francesco C. Stingo & Christine B. Peterson & Sean Jacobson & Charmion Cruickshank-Quinn & Katerina Kechris & Russell Bowler & Marina Vannucci, 2018. "A Bayesian Approach for Learning Gene Networks Underlying Disease Severity in COPD," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 59-85, April.
    2. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
    3. Zhixiang Lin & Tao Wang & Can Yang & Hongyu Zhao, 2017. "On joint estimation of Gaussian graphical models for spatial and temporal data," Biometrics, The International Biometric Society, vol. 73(3), pages 769-779, September.
    4. Banerjee, Sayantan & Ghosal, Subhashis, 2015. "Bayesian structure learning in graphical models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 147-162.
    5. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    6. Giraud Christophe & Huet Sylvie & Verzelen Nicolas, 2012. "Graph Selection with GGMselect," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-52, February.
    7. Paci, Lucia & Consonni, Guido, 2020. "Structural learning of contemporaneous dependencies in graphical VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    9. Huangdi Yi & Qingzhao Zhang & Cunjie Lin & Shuangge Ma, 2022. "Information‐incorporated Gaussian graphical model for gene expression data," Biometrics, The International Biometric Society, vol. 78(2), pages 512-523, June.
    10. Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2021. "Jewel : A Novel Method for Joint Estimation of Gaussian Graphical Models," Mathematics, MDPI, vol. 9(17), pages 1-24, August.
    11. Zhou, Jia & Li, Yang & Zheng, Zemin & Li, Daoji, 2022. "Reproducible learning in large-scale graphical models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    12. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    13. Chun, Hyonho & Lee, Myung Hee & Fleet, James C. & Oh, Ji Hwan, 2016. "Graphical models via joint quantile regression with component selection," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 162-171.
    14. Thierry Chekouo & Francesco C. Stingo & James D. Doecke & Kim-Anh Do, 2017. "A Bayesian integrative approach for multi-platform genomic data: A kidney cancer case study," Biometrics, The International Biometric Society, vol. 73(2), pages 615-624, June.
    15. Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.
    16. Azam Kheyri & Andriette Bekker & Mohammad Arashi, 2022. "High-Dimensional Precision Matrix Estimation through GSOS with Application in the Foreign Exchange Market," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
    17. Villers Fanny & Schaeffer Brigitte & Bertin Caroline & Huet Sylvie, 2008. "Assessing the Validity Domains of Graphical Gaussian Models in Order to Infer Relationships among Components of Complex Biological Systems," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(2), pages 1-37, September.
    18. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    19. Nezakati, Ensiyeh & Pircalabelu, Eugen, 2021. "Unbalanced distributed estimation and inference for precision matrices," LIDAM Discussion Papers ISBA 2021031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Tan, Kean Ming & Witten, Daniela & Shojaie, Ali, 2015. "The cluster graphical lasso for improved estimation of Gaussian graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 23-36.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:509:p:159-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.