IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i2p615-624.html
   My bibliography  Save this article

A Bayesian integrative approach for multi-platform genomic data: A kidney cancer case study

Author

Listed:
  • Thierry Chekouo
  • Francesco C. Stingo
  • James D. Doecke
  • Kim-Anh Do

Abstract

No abstract is available for this item.

Suggested Citation

  • Thierry Chekouo & Francesco C. Stingo & James D. Doecke & Kim-Anh Do, 2017. "A Bayesian integrative approach for multi-platform genomic data: A kidney cancer case study," Biometrics, The International Biometric Society, vol. 73(2), pages 615-624, June.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:2:p:615-624
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12587
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thierry Chekouo & Francesco C. Stingo & James D. Doecke & Kim-Anh Do, 2015. "miRNA–target gene regulatory networks: A Bayesian integrative approach to biomarker selection with application to kidney cancer," Biometrics, The International Biometric Society, vol. 71(2), pages 428-438, June.
    2. Valen E. Johnson & David Rossell, 2012. "Bayesian Model Selection in High-Dimensional Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 649-660, June.
    3. Li, Fan & Zhang, Nancy R., 2010. "Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces With Applications in Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1202-1214.
    4. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
    5. Simon, Noah & Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2011. "Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i05).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shirong Deng & Jie Chen & Huidong Shi, 2021. "Integrative analysis of multiple types of genomic data using an accelerated failure time frailty model," Computational Statistics, Springer, vol. 36(2), pages 1499-1532, June.
    2. Samorodnitsky, Sarah & Wendt, Chris H. & Lock, Eric F., 2024. "Bayesian simultaneous factorization and prediction using multi-omic data," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    3. Weibing Li & Thierry Chekouo, 2022. "Bayesian group selection with non-local priors," Computational Statistics, Springer, vol. 37(1), pages 287-302, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
    2. Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Model selection using mass-nonlocal prior," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 36-44.
    3. Elin Shaddox & Francesco C. Stingo & Christine B. Peterson & Sean Jacobson & Charmion Cruickshank-Quinn & Katerina Kechris & Russell Bowler & Marina Vannucci, 2018. "A Bayesian Approach for Learning Gene Networks Underlying Disease Severity in COPD," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 59-85, April.
    4. Weibing Li & Thierry Chekouo, 2022. "Bayesian group selection with non-local priors," Computational Statistics, Springer, vol. 37(1), pages 287-302, March.
    5. Zhixiang Lin & Tao Wang & Can Yang & Hongyu Zhao, 2017. "On joint estimation of Gaussian graphical models for spatial and temporal data," Biometrics, The International Biometric Society, vol. 73(3), pages 769-779, September.
    6. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
    7. Haixiang Zhang & Jian Huang & Liuquan Sun, 2022. "Projection‐based and cross‐validated estimation in high‐dimensional Cox model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 353-372, March.
    8. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    9. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    10. Marija Pizurica & Yuanning Zheng & Francisco Carrillo-Perez & Humaira Noor & Wei Yao & Christian Wohlfart & Antoaneta Vladimirova & Kathleen Marchal & Olivier Gevaert, 2024. "Digital profiling of gene expression from histology images with linearized attention," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    12. Nelson, Kelly P. & Parton, Lee C. & Brown, Zachary S., 2022. "Biofuels policy and innovation impacts: Evidence from biofuels and agricultural patent indicators," Energy Policy, Elsevier, vol. 162(C).
    13. Hua Xin & Yuhlong Lio & Hsien-Ching Chen & Tzong-Ru Tsai, 2024. "Zero-Inflated Binary Classification Model with Elastic Net Regularization," Mathematics, MDPI, vol. 12(19), pages 1-17, September.
    14. Jonathan Fuhr & Philipp Berens & Dominik Papies, 2024. "Estimating Causal Effects with Double Machine Learning -- A Method Evaluation," Papers 2403.14385, arXiv.org, revised Apr 2024.
    15. Paci, Lucia & Consonni, Guido, 2020. "Structural learning of contemporaneous dependencies in graphical VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    16. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    17. Simon Bussy & Mokhtar Z. Alaya & Anne‐Sophie Jannot & Agathe Guilloux, 2022. "Binacox: automatic cut‐point detection in high‐dimensional Cox model with applications in genetics," Biometrics, The International Biometric Society, vol. 78(4), pages 1414-1426, December.
    18. Biagini, Francesca & Groll, Andreas & Widenmann, Jan, 2013. "Intensity-based premium evaluation for unemployment insurance products," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 302-316.
    19. Benedicte Sjo Tislevoll & Monica Hellesøy & Oda Helen Eck Fagerholt & Stein-Erik Gullaksen & Aashish Srivastava & Even Birkeland & Dimitrios Kleftogiannis & Pilar Ayuda-Durán & Laure Piechaczyk & Dagi, 2023. "Early response evaluation by single cell signaling profiling in acute myeloid leukemia," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:2:p:615-624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.