IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v69y2013i2p478-487.html
   My bibliography  Save this article

Objective Bayesian Search of Gaussian Directed Acyclic Graphical Models for Ordered Variables with Non-Local Priors

Author

Listed:
  • Davide Altomare
  • Guido Consonni
  • Luca La Rocca

Abstract

No abstract is available for this item.

Suggested Citation

  • Davide Altomare & Guido Consonni & Luca La Rocca, 2013. "Objective Bayesian Search of Gaussian Directed Acyclic Graphical Models for Ordered Variables with Non-Local Priors," Biometrics, The International Biometric Society, vol. 69(2), pages 478-487, June.
  • Handle: RePEc:bla:biomet:v:69:y:2013:i:2:p:478-487
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12018
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nanny Wermuth & Kayvan Sadeghi, 2012. "Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 215-252, June.
    2. James O. Berger & German Molina, 2005. "Posterior model probabilities via path‐based pairwise priors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(1), pages 3-15, February.
    3. Ellis, Byron & Wong, Wing Hung, 2008. "Learning Causal Bayesian Network Structures From Experimental Data," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 778-789, June.
    4. Valen E. Johnson & David Rossell, 2012. "Bayesian Model Selection in High-Dimensional Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 649-660, June.
    5. C. M. Carvalho & J. G. Scott, 2009. "Objective Bayesian model selection in Gaussian graphical models," Biometrika, Biometrika Trust, vol. 96(3), pages 497-512.
    6. Nanny Wermuth & Kayvan Sadeghi, 2012. "Rejoinder on: Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 274-279, June.
    7. Ali Shojaie & George Michailidis, 2010. "Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs," Biometrika, Biometrika Trust, vol. 97(3), pages 519-538.
    8. Valen E. Johnson & David Rossell, 2010. "On the use of non‐local prior densities in Bayesian hypothesis tests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 143-170, March.
    9. Guido Consonni & Luca La Rocca, 2012. "Objective Bayes Factors for Gaussian Directed Acyclic Graphical Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(4), pages 743-756, December.
    10. Mathias Drton, 2004. "Model selection for Gaussian concentration graphs," Biometrika, Biometrika Trust, vol. 91(3), pages 591-602, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho-Hsiang Wu & Marco A. R. Ferreira & Mohamed Elkhouly & Tieming Ji, 2020. "Hyper Nonlocal Priors for Variable Selection in Generalized Linear Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 147-185, February.
    2. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
    3. Choi, Semin & Kim, Yesool & Park, Gunwoong, 2023. "Densely connected sub-Gaussian linear structural equation model learning via ℓ1- and ℓ2-regularized regressions," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    4. Guido Consonni & Roberta Paroli, 2017. "Objective Bayesian Comparison of Constrained Analysis of Variance Models," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 589-609, September.
    5. Zhang, Hongmei & Huang, Xianzheng & Han, Shengtong & Rezwan, Faisal I. & Karmaus, Wilfried & Arshad, Hasan & Holloway, John W., 2021. "Gaussian Bayesian network comparisons with graph ordering unknown," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    6. Nikolaos Petrakis & Stefano Peluso & Dimitris Fouskakis & Guido Consonni, 2020. "Objective methods for graphical structural learning," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 420-438, August.
    7. Nilotpal Sanyal & Marco A. R. Ferreira, 2017. "Bayesian Wavelet Analysis Using Nonlocal Priors with an Application to fMRI Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 361-388, November.
    8. Federico Castelletti & Guido Consonni & Luca Rocca, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 261-267, June.
    9. Fangting Zhou & Kejun He & Yang Ni, 2023. "Individualized causal discovery with latent trajectory embedded Bayesian networks," Biometrics, The International Biometric Society, vol. 79(4), pages 3191-3202, December.
    10. Yang Ni & Francesco C. Stingo & Veerabhadran Baladandayuthapani, 2015. "Bayesian nonlinear model selection for gene regulatory networks," Biometrics, The International Biometric Society, vol. 71(3), pages 585-595, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Altomare & Guido Consonni & Luca La Rocca, 2011. "Objective Bayesian Search of Gaussian DAG Models with Non-local Priors," Quaderni di Dipartimento 140, University of Pavia, Department of Economics and Quantitative Methods.
    2. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    3. Guido Consonni & Luca La Rocca & Stefano Peluso, 2017. "Objective Bayes Covariate-Adjusted Sparse Graphical Model Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 741-764, September.
    4. Guido Consonni & Luca La Rocca, 2010. "Moment Priors for Bayesian Model Choice with Applications to Directed Acyclic Graphs," Quaderni di Dipartimento 115, University of Pavia, Department of Economics and Quantitative Methods.
    5. Cao, Xuan & Khare, Kshitij & Ghosh, Malay, 2020. "Consistent Bayesian sparsity selection for high-dimensional Gaussian DAG models with multiplicative and beta-mixture priors," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    6. Gonzalo García-Donato & María Eugenia Castellanos & Alicia Quirós, 2021. "Bayesian Variable Selection with Applications in Health Sciences," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    7. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
    8. Alberto Roverato, 2015. "Log-mean Linear Parameterization for Discrete Graphical Models of Marginal Independence and the Analysis of Dichotomizations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 627-648, June.
    9. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    10. Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Model selection using mass-nonlocal prior," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 36-44.
    11. Monia Lupparelli & Alberto Roverato, 2017. "Log-mean linear regression models for binary responses with an application to multimorbidity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 227-252, February.
    12. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    13. Weibing Li & Thierry Chekouo, 2022. "Bayesian group selection with non-local priors," Computational Statistics, Springer, vol. 37(1), pages 287-302, March.
    14. Yan Zhou & Peter X.‐K. Song & Xiaoquan Wen, 2021. "Structural factor equation models for causal network construction via directed acyclic mixed graphs," Biometrics, The International Biometric Society, vol. 77(2), pages 573-586, June.
    15. Ho-Hsiang Wu & Marco A. R. Ferreira & Mohamed Elkhouly & Tieming Ji, 2020. "Hyper Nonlocal Priors for Variable Selection in Generalized Linear Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 147-185, February.
    16. Vassilios Bazinas & Bent Nielsen, 2022. "Causal Transmission in Reduced-Form Models," Econometrics, MDPI, vol. 10(2), pages 1-25, March.
    17. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
    18. Bala Rajaratnam, 2012. "Comment on: Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 268-273, June.
    19. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    20. Zhang, Hongmei & Huang, Xianzheng & Han, Shengtong & Rezwan, Faisal I. & Karmaus, Wilfried & Arshad, Hasan & Holloway, John W., 2021. "Gaussian Bayesian network comparisons with graph ordering unknown," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:69:y:2013:i:2:p:478-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.