IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v71y2009i5p971-992.html
   My bibliography  Save this article

A hierarchical eigenmodel for pooled covariance estimation

Author

Listed:
  • Peter D. Hoff

Abstract

Summary. Although the covariance matrices corresponding to different populations are unlikely to be exactly equal they can still exhibit a high degree of similarity. For example, some pairs of variables may be positively correlated across most groups, whereas the correlation between other pairs may be consistently negative. In such cases much of the similarity across covariance matrices can be described by similarities in their principal axes, which are the axes that are defined by the eigenvectors of the covariance matrices. Estimating the degree of across‐population eigenvector heterogeneity can be helpful for a variety of estimation tasks. For example, eigenvector matrices can be pooled to form a central set of principal axes and, to the extent that the axes are similar, covariance estimates for populations having small sample sizes can be stabilized by shrinking their principal axes towards the across‐population centre. To this end, the paper develops a hierarchical model and estimation procedure for pooling principal axes across several populations. The model for the across‐group heterogeneity is based on a matrix‐valued antipodally symmetric Bingham distribution that can flexibly describe notions of ‘centre’ and ‘spread’ for a population of orthogonal matrices.

Suggested Citation

  • Peter D. Hoff, 2009. "A hierarchical eigenmodel for pooled covariance estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 971-992, November.
  • Handle: RePEc:bla:jorssb:v:71:y:2009:i:5:p:971-992
    DOI: 10.1111/j.1467-9868.2009.00716.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2009.00716.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2009.00716.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chikuse, Yasuko, 1976. "Asymptotic distributions of the latent roots of the covariance matrix with multiple population roots," Journal of Multivariate Analysis, Elsevier, vol. 6(2), pages 237-249, June.
    2. Constantine, A. G. & Muirhead, R. J., 1976. "Asymptotic expansions for distributions of latent roots in multivariate analysis," Journal of Multivariate Analysis, Elsevier, vol. 6(3), pages 369-391, September.
    3. Takemura, Akimichi & Sheena, Yo, 2005. "Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 271-299, June.
    4. Robert J. Boik, 2002. "Spectral models for covariance matrices," Biometrika, Biometrika Trust, vol. 89(1), pages 159-182, March.
    5. Hoff, Peter D., 2007. "Model Averaging and Dimension Selection for the Singular Value Decomposition," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 674-685, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zongliang Hu & Zhishui Hu & Kai Dong & Tiejun Tong & Yuedong Wang, 2021. "A shrinkage approach to joint estimation of multiple covariance matrices," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 339-374, April.
    2. Kundu, Anupam & Pourahmadi, Mohsen, 2023. "Bayesian estimation of constrained mean-covariance of normal distributions," Statistics & Probability Letters, Elsevier, vol. 194(C).
    3. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    4. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    5. Bingkai Wang & Xi Luo & Yi Zhao & Brian Caffo, 2021. "Semiparametric partial common principal component analysis for covariance matrices," Biometrics, The International Biometric Society, vol. 77(4), pages 1175-1186, December.
    6. Roy, Arkaprava & Sarkar, Abhra, 2023. "Bayesian semiparametric multivariate density deconvolution via stochastic rotation of replicates," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    7. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    8. Alexander M. Franks, 2022. "Reducing subspace models for large‐scale covariance regression," Biometrics, The International Biometric Society, vol. 78(4), pages 1604-1613, December.
    9. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    2. Phillips, Peter C B, 1994. "Some Exact Distribution Theory for Maximum Likelihood Estimators of Cointegrating Coefficients in Error Correction Models," Econometrica, Econometric Society, vol. 62(1), pages 73-93, January.
    3. Zongliang Hu & Zhishui Hu & Kai Dong & Tiejun Tong & Yuedong Wang, 2021. "A shrinkage approach to joint estimation of multiple covariance matrices," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 339-374, April.
    4. Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
    5. Chikuse, Yasuko, 1998. "Density Estimation on the Stiefel Manifold," Journal of Multivariate Analysis, Elsevier, vol. 66(2), pages 188-206, August.
    6. Koki Shimizu & Hiroki Hashiguchi, 2024. "Chi-Square Approximation for the Distribution of Individual Eigenvalues of a Singular Wishart Matrix," Mathematics, MDPI, vol. 12(6), pages 1-11, March.
    7. Luca Bagnato & Antonio Punzo, 2021. "Unconstrained representation of orthogonal matrices with application to common principal components," Computational Statistics, Springer, vol. 36(2), pages 1177-1195, June.
    8. Chikuse, Yasuko, 2003. "Concentrated matrix Langevin distributions," Journal of Multivariate Analysis, Elsevier, vol. 85(2), pages 375-394, May.
    9. Daniels, Michael J., 2006. "Bayesian modeling of several covariance matrices and some results on propriety of the posterior for linear regression with correlated and/or heterogeneous errors," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1185-1207, May.
    10. Boik, Robert J., 2013. "Model-based principal components of correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 310-331.
    11. Hashiguchi, Hiroki & Numata, Yasuhide & Takayama, Nobuki & Takemura, Akimichi, 2013. "The holonomic gradient method for the distribution function of the largest root of a Wishart matrix," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 296-312.
    12. Sheena, Yo & Takemura, Akimichi, 2008. "Asymptotic distribution of Wishart matrix for block-wise dispersion of population eigenvalues," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 751-775, April.
    13. Alexander M. Franks, 2022. "Reducing subspace models for large‐scale covariance regression," Biometrics, The International Biometric Society, vol. 78(4), pages 1604-1613, December.
    14. Chao, John C. & Phillips, Peter C. B., 2002. "Jeffreys prior analysis of the simultaneous equations model in the case with n+1 endogenous variables," Journal of Econometrics, Elsevier, vol. 111(2), pages 251-283, December.
    15. Grant H. Hillier, 1987. "Joint Distribution Theory for Some Statistics Based on LIML and TSLS," Cowles Foundation Discussion Papers 840, Cowles Foundation for Research in Economics, Yale University.
    16. Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    17. Johannes Forkman & Julie Josse & Hans-Peter Piepho, 2019. "Hypothesis Tests for Principal Component Analysis When Variables are Standardized," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 289-308, June.
    18. Sylvia Kaufmann & Markus Pape, 2024. "A geometric approach to factor model identification," Working Papers 24.06, Swiss National Bank, Study Center Gerzensee.
    19. Nong Jin & Shiyu Zhou, 2006. "Data‐driven variation source identification for manufacturing process using the eigenspace comparison method," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(5), pages 383-396, August.
    20. Bingkai Wang & Xi Luo & Yi Zhao & Brian Caffo, 2021. "Semiparametric partial common principal component analysis for covariance matrices," Biometrics, The International Biometric Society, vol. 77(4), pages 1175-1186, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:71:y:2009:i:5:p:971-992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.