IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v29y2002i3p391-411.html
   My bibliography  Save this article

Hyper Inverse Wishart Distribution for Non‐decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models

Author

Listed:
  • ALBERTO ROVERATO

Abstract

While conjugate Bayesian inference in decomposable Gaussian graphical models is largely solved, the non‐decomposable case still poses difficulties concerned with the specification of suitable priors and the evaluation of normalizing constants. In this paper we derive the DY‐conjugate prior (Diaconis & Ylvisaker, 1979) for non‐decomposable models and show that it can be regarded as a generalization to an arbitrary graph G of the hyper inverse Wishart distribution (Dawid & Lauritzen, 1993). In particular, if G is an incomplete prime graph it constitutes a non‐trivial generalization of the inverse Wishart distribution. Inference based on marginal likelihood requires the evaluation of a normalizing constant and we propose an importance sampling algorithm for its computation. Examples of structural learning involving non‐decomposable models are given. In order to deal efficiently with the set of all positive definite matrices with non‐decomposable zero‐pattern we introduce the operation of triangular completion of an incomplete triangular matrix. Such a device turns out to be extremely useful both in the proof of theoretical results and in the implementation of the Monte Carlo procedure.

Suggested Citation

  • Alberto Roverato, 2002. "Hyper Inverse Wishart Distribution for Non‐decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 391-411, September.
  • Handle: RePEc:bla:scjsta:v:29:y:2002:i:3:p:391-411
    DOI: 10.1111/1467-9469.00297
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00297
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elin Shaddox & Francesco C. Stingo & Christine B. Peterson & Sean Jacobson & Charmion Cruickshank-Quinn & Katerina Kechris & Russell Bowler & Marina Vannucci, 2018. "A Bayesian Approach for Learning Gene Networks Underlying Disease Severity in COPD," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 59-85, April.
    2. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility using state space models," Papers 0802.0223, arXiv.org.
    3. Dipankar Bandyopadhyay & Antonio Canale, 2016. "Non-parametric spatial models for clustered ordered periodontal data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 619-640, August.
    4. Helen Armstrong & Christopher K. Carter & Kevin K. F. Wong & Robert Kohn, 2007. "Bayesian Covariance Matrix Estimation using a Mixture of Decomposable Graphical Models," Discussion Papers 2007-13, School of Economics, The University of New South Wales.
    5. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
    6. Abdolreza Mohammadi & Fentaw Abegaz & Edwin Heuvel & Ernst C. Wit, 2017. "Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 629-645, April.
    7. Bala Rajaratnam, 2012. "Comment on: Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 268-273, June.
    8. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    9. Leonardo Bottolo & Marco Banterle & Sylvia Richardson & Mika Ala‐Korpela & Marjo‐Riitta Järvelin & Alex Lewin, 2021. "A computationally efficient Bayesian seemingly unrelated regressions model for high‐dimensional quantitative trait loci discovery," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 886-908, August.
    10. Max Hinne & Ronald J Janssen & Tom Heskes & Marcel AJ van Gerven, 2015. "Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-26, November.
    11. Beatrice Franzolini & Alexandros Beskos & Maria De Iorio & Warrick Poklewski Koziell & Karolina Grzeszkiewicz, 2022. "Change point detection in dynamic Gaussian graphical models: the impact of COVID-19 pandemic on the US stock market," Papers 2208.00952, arXiv.org, revised May 2023.
    12. Donatello Telesca & Peter Müller & Steven M. Kornblau & Marc A. Suchard & Yuan Ji, 2012. "Modeling Protein Expression and Protein Signaling Pathways," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1372-1384, December.
    13. Fitch, A. Marie & Jones, Beatrix, 2012. "The cost of using decomposable Gaussian graphical models for computational convenience," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2430-2441.
    14. Guido Consonni & Luca La Rocca & Stefano Peluso, 2017. "Objective Bayes Covariate-Adjusted Sparse Graphical Model Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 741-764, September.
    15. Webb, Emily L. & Forster, Jonathan J., 2008. "Bayesian model determination for multivariate ordinal and binary data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2632-2649, January.
    16. Roverato, Alberto & Paterlini, Sandra, 2004. "Technological modelling for graphical models: an approach based on genetic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 323-337, September.
    17. Carter, Christopher K. & Wong, Frederick & Kohn, Robert, 2011. "Constructing priors based on model size for nondecomposable Gaussian graphical models: A simulation based approach," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 871-883, May.
    18. Junghi Kim & Kim‐Anh Do & Min Jin Ha & Christine B. Peterson, 2019. "Bayesian inference of hub nodes across multiple networks," Biometrics, The International Biometric Society, vol. 75(1), pages 172-182, March.
    19. Federico Castelletti, 2020. "Bayesian Model Selection of Gaussian Directed Acyclic Graph Structures," International Statistical Review, International Statistical Institute, vol. 88(3), pages 752-775, December.
    20. Bekker, Andriëtte & van Niekerk, Janet & Arashi, Mohammad, 2017. "Wishart distributions: Advances in theory with Bayesian application," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 272-283.
    21. Codazzi, Laura & Colombi, Alessandro & Gianella, Matteo & Argiento, Raffaele & Paci, Lucia & Pini, Alessia, 2022. "Gaussian graphical modeling for spectrometric data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    22. Daniel Felix Ahelegbey, 2015. "The Econometrics of Networks: A Review," Working Papers 2015:13, Department of Economics, University of Venice "Ca' Foscari".
    23. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:29:y:2002:i:3:p:391-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.